Problem 9 in Section 2.1. The time rate of change of a rabbit population P is proportional to the square rot pf P. At time $t=0$ (months) the population numbers 100 rabbits and is increasing at the rate of 20 rabbits per month. How many rabbits will there be one year later?
Solution. We are told that $\frac{d P}{d t}=k \sqrt{P}, P(0)=100$, and $\frac{d P}{d t}(0)=20$. We must find $P(12)$.

We can evaluate k at the beginning. Indeed, $\frac{d P}{d t}(0)=k \sqrt{P(0)}$; thus, $20=k \sqrt{100}$. It follows that $20=10 k$ and $k=\frac{20}{10}=2$.

We separate the variables and integrate:

$$
\begin{aligned}
& \int \frac{d P}{\sqrt{P}}=\int k d t \\
& 2 \sqrt{P}=k t+C
\end{aligned}
$$

. We can evaluate C by plugging $t=0$ into both sides of the equation:

$$
2 \sqrt{100}=C
$$

and

$$
20=C
$$

At this point we have

$$
2 \sqrt{P}=2 t+20
$$

Divide both sides by 2 ; then square each side:

$$
P=(t+10)^{2}
$$

It follows that $P(12)=(22)^{2}$.
After one year there will be $(22)^{2}$ rabbits.

