Problem 9 in Section 2.1. The time rate of change of a rabbit population P is proportional to the square rrot pf P. At time t = 0 (months) the population numbers 100 rabbits and is increasing at the rate of 20 rabbits per month. How many rabbits will there be one year later?

Solution. We are told that $\frac{dP}{dt} = k\sqrt{P}$, P(0) = 100, and $\frac{dP}{dt}(0) = 20$. We must find P(12).

We can evaluate k at the beginning. Indeed, $\frac{dP}{dt}(0) = k\sqrt{P(0)}$; thus, $20 = k\sqrt{100}$. It follows that 20 = 10k and $k = \frac{20}{10} = 2$.

We separate the variables and integrate:

$$\int \frac{dP}{\sqrt{P}} = \int k \, dt$$
$$2\sqrt{P} = kt + C$$

. We can evaluate C by plugging t = 0 into both sides of the equation:

$$2\sqrt{100} = C$$

and

20 = C.

At this point we have

 $2\sqrt{P} = 2t + 20.$

Divide both sides by 2; then square each side:

 $P = (t + 10)^2.$

It follows that $P(12) = (22)^2$.

After one year there will be $(22)^2$ rabbits.