Problem 32 in Section 2.1 Solve the Initial Value Problem

$$
\frac{d P}{d t}=k P(M-P) \quad P(0)=P_{0}
$$

Draw the solution for

- $P_{0}=M$,
- $M<P_{0}$, and
- $P_{0}<M$.

Solution.

We solve

$$
\frac{d P}{d t}=k M P-k P^{2}
$$

We can separate the variables:

$$
\begin{equation*}
\frac{d P}{M P-P^{2}}=k d t \tag{1}
\end{equation*}
$$

It is not difficult to integrate

$$
\frac{1}{P(M-P)} .
$$

We use the technique of partial fractions and see what $\frac{1}{P(M-P)}$ used to look like before some body "cleaned it up". It used to be

$$
\frac{1}{P(M-P)}=\frac{A}{P}+\frac{B}{M-P}
$$

for some numbers A and B. We can figure out A and B. Clear the denominators:

$$
1=A(M-P)+B P
$$

(The last equation holds for all P. The number M is fixed and not zero. Our job is to find A and B.) Plug in $P=M$ to learn that $\frac{1}{M}=B$. Plug in $P=0$ to learn that $\frac{1}{M}=A$. Observe that

$$
\frac{1}{M}\left(\frac{1}{P}+\frac{1}{M-P}\right)
$$

really does equal $\frac{1}{P(M-P)}$. Integrate Equation (1) to obtain

$$
\frac{1}{M} \int\left(\frac{1}{P}+\frac{1}{M-P}\right) d P=\int k d t
$$

and

$$
\frac{1}{M}(\ln P-\ln |M-P|)=k t+C
$$

(There is no need to write $|P|$, because P is a population; hence it can not be negative.) Multiply both sides of the equation by M to get

$$
\ln \left(\frac{P}{|M-P|}\right)=M k t+M C
$$

Exponentiate to obtain

$$
\frac{P}{|M-P|}=e^{M C} e^{M k t}
$$

Of course, $|M-P|= \pm(M-P)$. Move \pm to the other side and let $K= \pm e^{M C}$.

$$
\begin{equation*}
\frac{P}{M-P}=K e^{M k t} \tag{2}
\end{equation*}
$$

This is a good time to calculate K. Plug $t=0$ into both sides of (2) to learn that

$$
\begin{equation*}
\frac{P(0)}{M-P(0)}=K \tag{3}
\end{equation*}
$$

We want to solve for P; so we multiply both sides of (2) by $M-P$ to obtain

$$
P=K e^{M k t}(M-P)
$$

Add $K e^{M k t} P$ to both sides

$$
P\left(1+K e^{M k t}\right)=K e^{M k t} M
$$

Divide both sides by $1+K e^{M k t}$ and obtain

$$
P=\frac{K e^{M k t} M}{1+K e^{M k t}} .
$$

This is a formula for $P(t)$; but lets clean it up a little! Instead of having two competing exponential functions, we arrange things so that there is only one exponential function. Instead of having the constant K appear twice, we arrange things so K only appears once. Divide top and bottom by $K e^{M k t}$. Thus,

$$
P=\frac{M}{\frac{e^{-M k t}}{K}+1} .
$$

Replace K by the value given in (3).

$$
P=\frac{M}{\frac{(M-P(0)) e^{-M k t}}{P(0)}+1} .
$$

Multiply top and bottom by $P(0)$. We have calculated that

$$
P(t)=\frac{M P(0)}{(M-P(0)) e^{-M k t}+P(0)},
$$

or

$$
P(t)=\frac{M P(0)}{P(0)+(M-P(0)) e^{-M k t}}
$$

Here is the first cool observation. If the population $P(t)$ is governed by the logistic equation, then the population is sustainable. That is,

$$
\lim _{t \rightarrow \infty} P(t)
$$

exists and is finite. In particular,

$$
\lim _{t \rightarrow \infty} P(t)=\lim _{t \rightarrow \infty} \frac{M P(0)}{P(0)+(M-P(0)) e^{-M k t}}=\frac{M P(0)}{P(0)}=M,
$$

because $\lim _{t \rightarrow \infty} e^{-M k t}=0$.
Here is the second observation. If the population $P(t)$ starts smaller than the limiting population (i.e. M), then the population will always be smaller than M because the denominator of

$$
P(t)=\frac{M P(0)}{P(0)+(M-P(0)) e^{-M k t}}
$$

will always be bigger than $P(0)$; hence the ratio $\frac{P(0)}{P(0)+(M-P(0)) e^{-M k t}}$ will always be LESS THAN 1 ; so $P(t)$ is some fraction times M.

Similarly, if the population starts larger than the limiting population, then the population will always be larger than M because the multiplier $\frac{P(0)}{P(0)+(M-P(0)) e^{-M k t}}$ will always be larger than one.

The graph of $P(t)$ for various choices of $P(0)$ looks like:

Solutions of the logistic equation

$$
\frac{d P}{d t}=k P(M-P)
$$

with $O<k, M$

