Problem 19 in Section 2.1 Consider an alligator population which satisfies the extinction/explosion Differential Equation as in Problem 18. If the initial population is 100 alligators and there are 10 births per month and 9 deaths per month occurring at time $t=0$, how many months does it take for $P(t)$ to reach 10 times the threshold population M ?
Solution We saw in number 18 that $M=\frac{D(0) P(0)}{B(0)}$. This problem has

$$
P(0)=100, \quad B(0)=10, \quad \text { and } \quad D(0)=9 .
$$

Thus $M=\frac{9(100)}{10}=90$. We want to find t with $P(t)=(90)(10)=900$. The solution of the Initial Value Problem

$$
\frac{d P}{d t}=k P(P-M) \quad P(0)=P_{0} \quad \text { with } k \text { and } M \text { positive }
$$

is

$$
P=\frac{M P_{0}}{P_{0}+\left(M-P_{0}\right) e^{k M t}} .
$$

(See problem 33 or the class notes. There is no reason to memorize this formula.) Of course the Differential Equations

$$
\begin{aligned}
& \frac{d P}{d t}=k P^{2}-k M P \\
& \frac{d P}{d t}=a P^{2}-b P
\end{aligned}
$$

are exactly the same if one takes $a=k$ and $b=k M$, where $B=a P^{2}$ and $D=b P$. In particular, $k=a=\frac{B(0)}{P(0)^{2}}=\frac{B_{0}}{P_{0}^{2}}=\frac{10}{100^{2}}=\frac{1}{1000}$. Thus,

$$
P=\frac{M P_{0}}{P_{0}+\left(M-P_{0}\right) e^{k M t}}=\frac{90(100)}{100+(-10) e^{\frac{90}{1000} t}} .
$$

Our job is to find t with

$$
900=\frac{90(100)}{100+(-10) e^{\frac{90}{1000} t}} .
$$

Multiply both sides by $100-10 e^{9 t / 100}$. Divide both sides by 900 .

$$
100-10 e^{\frac{9}{100} t}=10
$$

Subtract 10 from both sides. Add $10 e^{\frac{9}{100} t}$ to both sides. Obtain

$$
\begin{gathered}
90=10 e^{\frac{9}{10} t} \\
9=e^{\frac{9}{100} t} \\
\ln 9=\frac{9}{100} t \\
\frac{100}{9} \ln 9=t .
\end{gathered}
$$

The population will reach 900 , which is $10 M$, after $\frac{100}{9} \ln 9$ months.

