Problem 18 in Section 2.1 Consider a population $P(t)$ which satisfies the extinction/explosion Differential Equation $\frac{d P}{d t}=a P^{2}-b P$, where $B=a P^{2}$ is the time rate at which births occur and $D=b P$ is the rate at which deaths occur. If the initial population is $P(0)=P_{0}$ and B_{0} births per month and D_{0} births per month are occurring at time $t=0$, show that the threshold population is $M=D_{0} P_{0} / B_{0}$.
Solution. Compare the two forms of the extinction-explosion Differential Equation:

$$
\begin{aligned}
& \frac{d P}{d t}=k P^{2}-k M P \\
& \frac{d P}{d t}=a P^{2}-b P
\end{aligned}
$$

to see that $a=k$ and $b=k M$. Plug $t=0$ into the equations $B=a P^{2}$ and $D=b P$ to see that $B(0)=a P(0)^{2}$ and $D(0)=b P(0)$. Conclude that

$$
M=\frac{b}{k}=\frac{b}{a}=\frac{\frac{D(0)}{P(0)}}{\frac{B(0)}{P(0)^{2}}}=\frac{D(0)}{P(0)} \frac{P(0)^{2}}{B(0)}=\frac{D(0) P(0)}{B(0)}=\frac{D_{0} P_{0}}{B_{0}} .
$$

