Problem 16 in Section 2.1 A rabbit population satisfies the Logistic Differential Equation $\frac{d P}{d t}=a P-b P^{2}$. If the initial population is 120 rabbits and there are 8 births per month and 6 deaths per month occurring at time $t=0$, how many months does it take for $P(t)$ to reach 95% of the limiting population M ?
Solution. We know that the solution of the Initial Value Problem

$$
\frac{d P}{d t}=k P(M-P), \quad P(0)=P_{0}
$$

is

$$
P(t)=\frac{M P_{0}}{P_{0}+\left(M-P_{0}\right) e^{-k M t}}
$$

We first see how k and M are related to a and b. Compare the two Differential Equations:

$$
\begin{aligned}
\frac{d P}{d t} & =k M P-k P^{2} \\
\frac{d P}{d t} & =a P-b P^{2}
\end{aligned}
$$

to see that $a=k M$ and $b=k$. It follows that

$$
M=\frac{a}{k}=\frac{a}{b}=\frac{\frac{B(0)}{P(0)}}{\frac{D(0)}{P(0)^{2}}}=\frac{B(0) P(0)}{D(0)}
$$

because $B(0)=a P(0)$ and $D(0)=b P(0)^{2}$. In this problem

$$
P(0)=120, \quad B(0)=8, \quad D(0)=6,
$$

and P_{0} is the same as $P(0)$. It follows that

$$
M=\frac{B(0) P(0)}{D(0)}=\frac{8(120)}{6}=160
$$

and

$$
k=b=\frac{D(0)}{P(0)^{2}}=\frac{6}{120^{2}}=\frac{1}{120(20)}
$$

Our job is to find the time t when

$$
P(t)=\frac{95}{100} M=\frac{95}{100}(160)=\frac{95}{5}(8)=19(8)=152
$$

We must find t with

$$
152=\frac{M P_{0}}{P_{0}+\left(M-P_{0}\right) e^{-k M t}}
$$

$$
152=\frac{(160)(120)}{120+(160-120) e^{-\frac{1}{120(20)}(160) t}}=\frac{(160)(120)}{120+40 e^{-\frac{1}{15} t}}=\frac{(160)(120)}{40\left(3+e^{-\frac{1}{15} t}\right)}
$$

We must find t with

$$
152=\frac{(160)(3)}{\left(3+e^{-\frac{1}{15} t}\right)}
$$

Multiply both sides by $3+e^{-1 / 15 t}$ and divide both sides by 152 to obtain

$$
3+e^{-\frac{1}{15} t}=3\left(\frac{20}{19}\right) .
$$

Subtract 3 from each side to obtain

$$
e^{-\frac{1}{15} t}=3\left(\frac{20}{19}-1\right)
$$

or

$$
e^{-\frac{1}{15} t}=3\left(\frac{1}{19}\right)
$$

Take the logarithm of each side:

$$
-\frac{1}{15} t=\ln \frac{3}{19} .
$$

Multiply both sides by -15 :

$$
t=-15 \ln \frac{3}{19}=15 \ln \frac{19}{3}
$$

The population will reach 95% of M after $15 \ln \frac{19}{3}$ months.

