Problem 15 in Section 2.1 Consider a population $P(t)$ which satisfies the logistic equation $\frac{d P}{d t}=a P-b P^{2}$, where a and b are constants, $B=a P$ is the birth rate, and $D=b P^{2}$ is the death rate. Write M in terms of $B(0), D(0)$, and $P(0)$.
Comment The point of the problem is that we know the solution of

$$
\frac{d P}{d t}=k P(M-P)
$$

In particular, we know that in the long term the population will approach M.
Someone interested in the population can probably calculate $B(0), D(0)$, and $P(0)$. If we can express M in terms of $B(0), D(0)$, and $P(0)$, then we can make a plausible prediction of what the population will do without doing anymore calculating.
Solution. Look at the two equations:

$$
\begin{aligned}
\frac{d P}{d t} & =k M P-k P^{2} \\
\frac{d P}{d t} & =a P-b P^{2}
\end{aligned}
$$

The coefficient of P^{2} is $-k$ in the top equation and is $-b$ in the bottom equation; so, $k=b$. The coefficient of P is $k M$ in the top equation and is a in the bottom equation. Thus $a=k M$; so $a=b M$ and $\frac{a}{b}=M$.

Plug 0 into $B=a P$ and $D=a P^{2}$ to learn that $B(0)=a P(0)$ and $D(0)=b P(0)^{2}$. We conclude that

$$
M=\frac{a}{b}=\frac{\frac{B(0)}{P(0)}}{\frac{D(0)}{P(0)^{2}}}=\frac{B(0) P(0)}{D(0)} .
$$

Our answer is

$$
M=\frac{B(0) P(0)}{D(0)} .
$$

