Problem 3 in Section 1.6. Solve $x y^{\prime}=y+2 \sqrt{x y}$.
Solution. This Differential Equation is homogeneous of degree one in x and y. That is, every term has total degree one in x and y. We make a homogeneous substitution. Divide both sides by x^{1} to obtain

$$
\begin{aligned}
& y^{\prime}=\frac{y}{x}+2 \frac{\sqrt{x y}}{x} \\
& y^{\prime}=\frac{y}{x}+2 \sqrt{\frac{x y}{x^{2}}} \\
& y^{\prime}=\frac{y}{x}+2 \sqrt{\frac{y}{x}}
\end{aligned}
$$

Let $v=\frac{y}{x}$. Observe that $x v=y$ and $x \frac{d v}{d x}+v=\frac{d y}{d x}$. Convert the Differential Equation to

$$
x \frac{d v}{d x}+v=v+2 \sqrt{v}
$$

Subtract v from both sides:

$$
x \frac{d v}{d x}=2 \sqrt{v}
$$

Divide both sides by $x \sqrt{v}$; multiply both sides by $d x$; integrate:

$$
\begin{gathered}
\int \frac{1}{\sqrt{v}} d v=2 \int \frac{1}{x} d x \\
2 \sqrt{v}=2 \ln |x|+C
\end{gathered}
$$

Divide both sides by 2 and replace v with $\frac{y}{x}$:

$$
\sqrt{\frac{y}{x}}=\ln |x|+\frac{C}{2}
$$

Square both sides

$$
\frac{y}{x}=\left(\ln |x|+\frac{C}{2}\right)^{2} .
$$

Let K be the constant $\frac{C}{2}$. Conclude

$$
y=x(\ln |x|+K)^{2} .
$$

Check. We compute

$$
\begin{aligned}
y^{\prime} & =2 x(\ln |x|+K) \frac{1}{x}+(\ln |x|+K)^{2} \\
& =2(\ln |x|+K)+(\ln |x|+K)^{2} .
\end{aligned}
$$

We plug y and y^{\prime} into the Differential Equation $x y^{\prime}=y+2 \sqrt{x y}$ and see if it works.

The left side becomes $x\left(2(\ln |x|+K)+(\ln |x|+K)^{2}\right)$.
The right side becomes $x(\ln |x|+K)^{2}+2 \sqrt{x x(\ln |x|+K)^{2}}$.
The left side is equal to the right side. Our answer is correct.

