Problem 18 in Section 1.6. Solve $(x+y) y^{\prime}=1$.
Solution. This Differential Equation has the form $\frac{d y}{d x}=\frac{1}{L}$, where L is the linear expression $x+y$. We make a linear substitution. That is, we let

$$
v=x+y
$$

We are promised that after we turn the Differential Equation into a Differential Equation which involves v as a function of x, then we will be able to separate the variables.

If $v=x+y$, then $\frac{d v}{d x}=1+\frac{d y}{d x}$. The original Differential Equation has become

$$
v\left(\frac{d v}{d x}-1\right)=1
$$

We separate the variables. Divide both sides by v and add 1 to both sides:

$$
\frac{d v}{d x}=\frac{1}{v}+1 .
$$

Get a common denominator:

$$
\frac{d v}{d x}=\frac{1+v}{v} .
$$

Multiply both sides by $\frac{v}{1+v}$ and multiply both sides by $d x$:

$$
\frac{v}{1+v} d v=d x
$$

Use long division (or make the calculation in your head) to see that

$$
\frac{v}{1+v}=1-\frac{1}{1+v}
$$

Integrate both sides of

$$
\left(1-\frac{1}{1+v}\right) d v=d x
$$

to obtain

$$
v-\ln |1+v|=x+C
$$

Put $x+y$ in for v to obtain:

$$
x+y-\ln |1+x+y|=x+C .
$$

We can subtract x from each side to obtain

$$
y-\ln |1+x+y|=C
$$

I would like to solve for y, but I am unable to do that. The best I can say is that

Any function $y=y(x)$ which satisfies $y-\ln |1+x+y|=C$ is a solution of the Differential Equation.

Check. We can use implicit differentiation to find $\frac{d y}{d x}$. If $y=y(x)$ is a function which satisfies $y-\ln |1+x+y|=C$, then one merely takes $\frac{d}{d x}$ of both sides. Whenever one has to take the derivative of y, one writes $\frac{d y}{d x}$:

$$
\frac{d y}{d x}-\frac{1+\frac{d y}{d x}}{1+x+y}=0 .
$$

Now we solve for $\frac{d y}{d x}$. Multiply both sides by $1+x+y$:

$$
\frac{d y}{d x}(1+x+y)-\left(1+\frac{d y}{d x}\right)=0 .
$$

This expression is linear in $\frac{d y}{d x}$; that is some terms have $\frac{d y}{d x}$; the rest don't. Get all of the terms that involve $\frac{d y}{d x}$ on one side; get all of the rest of the terms on the other side:

$$
\begin{gathered}
\frac{d y}{d x}(1+x+y-1)=1 . \\
\frac{d y}{d x}(x+y)=1 .
\end{gathered}
$$

We have shown that every $y=y(x)$ which satisfies $y-\ln |1+x+y|=C$ also satisfies the Differential Equation $(x+y) y^{\prime}=1$. Our answer is correct.

