Problem 35 in Section 1.4. Carbon extracted from an ancient skull contained only one-sixth as much ${}^{14}C$ as carbon extracted from present-day bone. How old is the skull?

Solution. The first piece of background is the fact that there are two kinds of Carbon: ¹²C and ¹⁴C: ¹⁴C is radioactive and ¹²C is stable. It is assumed that living things have a constant ratio of the two isotopes because breathing replenishes the ¹⁴C which has decayed. But once an organism dies, then ¹⁴C continues to decay but is not replenished any longer.

The second piece of background is the assumption that radioactive material decays at a rate proportional to the amount present. (That is, if A(t) is the amount of ¹⁴C present at time t, then $\frac{dA}{dt} = -kA$ for some positive constant k.)

The third piece of background is that the k is never given explicitly, but the half-life of each radioactive substance can be looked up. One can calculate the k from the half-life. The half-life of ¹⁴C is about 5700 years. (Of course, you do not have to know this.)

Once you have all of the background, the problem is not very hard. Let A(t) be the amount of ¹⁴C in the skull at time t. Take t = 0 to be the moment the creature died. Measure time in years. Let t_{now} represent now. Let $A(0) = A_0$. We are told that $A(5700) = \frac{1}{2}A_0$ and $A(t_{now}) = \frac{1}{6}A_0$.

Let $A(0) = A_0$. We are told that $A(5700) = \frac{1}{2}A_0$ and $A(t_{now}) = \frac{1}{6}A_0$. To solve the Differential Equation $\frac{dA}{dt} = -kA$, separate the variables and integrate:

$$\int \frac{dA}{A} = -k \int dt$$
$$\ln A = -kt + C$$

(We know that A is positive so |A| = A.) Exponentiate

$$A = e^C e^{-kt}$$

Plug in t = 0 to see that

$$A_0 = A(0) = e^C;$$

hence,

$$A(t) = A_0 e^{-kt}.$$

We can use the half life to find *k*:

$$\frac{1}{2}A_0 = A(5700) = A_0 e^{-5700k}$$
$$\frac{1}{2} = e^{-5700k}$$
$$\frac{\ln(\frac{1}{2})}{-5700} = k.$$

Now, we find t_{now} .

$$\begin{split} \tfrac{1}{6}A_0 &= A(t_{\rm now}) = A_0 e^{-kt_{\rm now}} \\ & \tfrac{1}{6} = e^{-kt_{\rm now}} \end{split}$$

$$\ln(\frac{1}{6}) = -kt_{\text{now}}$$
$$t_{\text{now}} = \frac{\ln(\frac{1}{6})}{-k} = 5700 \frac{\ln \frac{1}{6}}{\ln \frac{1}{2}} = 5700 \frac{(-\ln 6)}{(-\ln 2)} = 5700 \frac{\ln 6}{\ln 2}.$$

It has been about 14,734 years since that animal died.