Problem 32 in Section 1.2. Suppose that a car skids 15 m if it is moving at 50 km/h when the brakes are applied. Assuming that the car has the same constant deceleration, how far will it skid if it is moving at 100 km/hr when the brakes are applied?

Suggestion. I suggest that you ignore the meters, kilometers, and hours from the given problem and calculate the stopping distance as a function of the initial speed v_0 and the constant deceleration -k. (Notice that k is positive.) Then see how the stopping distance changes when v_0 is replaced by $2v_0$.

Solution. Let x be the position of the car at time t. Let t = 0 be the moment the brakes are applied. Take x(0) = 0. Let -k be the constant deceleration of this car. (Notice that k is a positive number.) Let v_0 be the speed of the car when the brakes are applied. Our plan is to find a formula for the stopping distance in terms of k and v_0 . Let t_{stop} be the time when the car stops. Of course, $x(t_{stop})$ is how far the car skidded.

The Initial Value Problem is x'' = -k, $x'(0) = v_0$, and x(0) = 0. The solution of the IVP is $x(t) = -kt^2/2 + v_0t$ and $x'(t) = -tk + v_0$. The car stops when $x'(t_{stop}) = 0$; so $0 = -kt_{stop} + v_0$. So the car stops at $t_{stop} = \frac{v_0}{k}$. The position of the car when it stops is $x(t_{stop}) = -k(\frac{v_0}{k})^2/2 + v_0(\frac{v_0}{k}) = \frac{v_0^2}{2k}$. If the initial speed is doubled then the stopping distance is multiplied by a factor of 4. In particular if the initial speed is raised from 50 k/h to 100 k/h, then the stopping distance increases from 15 m to $\boxed{60m}$.