Problem 26 in Section 1.1. Verify that $y(x) = (x + C) \cos x$ is a solution of the Differential Equation $y' + y \tan x = \cos x$ for any constant *C*. Find the constant *C* for which $y(\pi) = 0$.

Solution. We plug

$$y = (x + C)\cos x$$
 and $y' = (x + C)(-\sin x) + \cos x$

into $y' + y \tan x$ and obtain

$$(x+C)(-\sin x) + \cos x + (x+C)\cos x \tan x$$
$$= -\sin x(x+C) + \cos x + (x+c)\sin x$$
$$= \cos x\checkmark$$

If $y(\pi) = 0$, then $0 = (\pi + C) \cos(\pi)$; so $0 = (\pi + C)(-1)$ and $C = -\pi$.

We conclude that $y = (x - \pi) \cos x$ is a solution of the initial value problem $y' + y \tan x = \cos x$ and $y(\pi) = 0$.