Problem 11 in Section 1.1. Check that $y_1 = \frac{1}{x^2}$ and $y_2 = \frac{\ln x}{x^2}$ are solutions of the Differential Equation $x^2y'' + 5xy' + 4y = 0$, where $y' = \frac{dy}{dx}$.

Solution. We plug

$$y_1 = x^{-2}$$

 $y'_1 = -2x^{-3}$
 $y''_1 = 6x^{-4}$

into $x^2y^{\prime\prime}+5xy^\prime+4y$ and obtain

$$x^{2}(6x^{-4}) + 5x(-2x^{-3}) + 4x^{-2} = x^{-2}(6 - 10 + 4) = 0.\checkmark$$

We plug

$$y_2 = \frac{\ln x}{x^2}$$

$$y'_2 = \ln x(-2)x^{-3} + x^{-3}$$

$$y''_2 = \ln x(6x^{-4}) - 2x^{-4} - 3x^{-4} = 6x^{-4}\ln x - 5x^{-4}$$

into $x^2y^{\prime\prime}+5xy^\prime+4y$ and obtain

$$x^{2}(6x^{-4}\ln x - 5x^{-4}) + 5x((-2)x^{-3}\ln x + x^{-3}) + 4x^{-2}\ln x$$
$$= x^{-2}\ln x(6 - 10 + 4) + x^{-2}(-5 + 5) = 0\checkmark$$

We see that y_1 and y_2 both are solutions of the Differential Equation.