

Math 241, Final Exam, Summer, 2002

1. Let $f(x, y) = x \sin(xy)$. Find $\vec{\nabla} f$.

We see that

$$\vec{\nabla} f = f_x \vec{i} + f_y \vec{j} = \boxed{\left(xy \cos(xy) + \sin(xy) \right) \vec{i} + x^2 \cos(xy) \vec{j}}.$$

2. Find the equations of the line through the points $P = (1, -3, 4)$ and $Q = (3, 4, 6)$. **Check your answer.**

We calculate $\vec{PQ} = 2\vec{i} + 7\vec{j} + 2\vec{k}$; so the line is

$$\boxed{\begin{cases} x = 1 + 2t \\ y = -3 + 7t \\ z = 4 + 2t \end{cases}}$$

Notice that when $t = 0$ the point is $(1, -3, 4)$ and when $t = 1$, the point is $(3, 4, 6)$.

3. Find the equation of the plane through the points $P = (2, 1, 2)$, $Q = (3, 3, 6)$, and $R = (0, -1, 0)$. **Check your answer.**

We calculate $\vec{PQ} = \vec{i} + 2\vec{j} + 4\vec{k}$ and $\vec{PR} = -2\vec{i} - 2\vec{j} - 2\vec{k}$; so

$$\vec{PQ} \times \vec{PR} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & 4 \\ -2 & -2 & -2 \end{vmatrix} = \begin{vmatrix} 2 & 4 \\ -2 & -2 \end{vmatrix} \vec{i} - \begin{vmatrix} 1 & 4 \\ -2 & -2 \end{vmatrix} \vec{j} + \begin{vmatrix} 1 & 2 \\ -2 & -2 \end{vmatrix} \vec{k}$$

$= 4\vec{i} - 6\vec{j} + 2\vec{k}$. The plane is $4(x - 0) - 6(y + 1) + 2(z - 0) = 0$, which is the same as

$$\boxed{2x - 3y + z = 3.}$$

Plug in P : $4 - 3 + 2 = 3$. Plug in Q : $6 - 9 + 6 = 3$. Plug in R : $3 = 3$.

4. Let $f(x, y) = \frac{x^2}{x^2 + 2y^2}$. Calculate the limit of $f(x, y)$ as $(x, y) \rightarrow (0, 0)$ along $y = 3x$.

We calculate

$$\lim_{\substack{(x,y) \rightarrow (0,0) \\ \text{along } y=3x}} \frac{x^2}{x^2 + 2y^2} = \lim_{x \rightarrow 0} \frac{x^2}{x^2 + 2(3x)^2} = \lim_{x \rightarrow 0} \frac{x^2}{19x^2} = \lim_{x \rightarrow 0} \frac{1}{19} = \boxed{\frac{1}{19}}.$$

5. Identify all local extreme points and all saddle points of $f(x, y) = x^2y - 6y^2 - 3x^2$.

We calculate $f_x = 2xy - 6x = 2x(y - 3)$ and $f_y = x^2 - 12y$. Both partial derivatives are zero when

$$\begin{cases} 0 = 2x(y - 3) \\ 0 = x^2 - 12y \end{cases}$$

So either $x = 0$ and $0 = -12y$; or $y = 3$ and $0 = x^2 - 36$. We conclude that there are three points where f_x and f_y both are zero; namely, $(0, 0)$, $(6, 3)$, and $(-6, 3)$.

We now calculate $f_{xx} = 2y - 6$, $f_{xy} = 2x$, and $f_{yy} = -12$. The discriminant D is equal to

$$D = f_{xx}f_{yy} - f_{xy}^2 = (2y - 6)(-12) - (2x)^2.$$

At $(0, 0)$, $D(0, 0) = 72 > 0$ and $f_{yy}(0, 0) = -12 < 0$; so $(0, 0, 0)$ is a local maximum point. Observe also that $D(-6, 3) = D(6, 3) = -144 < 0$; thus, $(6, 3, f(6, 3))$ and $(-6, 3, f(-6, 3))$ both are saddle points. We conclude

$(0, 0, 0)$ is a local maximum point, and
 $(6, 3, f(6, 3))$ and $(-6, 3, f(-6, 3))$ both are saddle points.

6. Find the intersection of the two lines:

$$\frac{x-5}{2} = \frac{y-3}{1} = \frac{z}{-1} \quad \text{and} \quad \frac{x+8}{3} = \frac{y+5}{2} = \frac{z+1}{1}.$$

Check your answer.

Walk on the first line. At time t , you stand at the point $x = 5 + 2t$, $y = 3 + t$, and $z = -t$. We look for a time which causes your position to satisfy both equations of the second line. We need a common solution to

$$\frac{5 + 2t + 8}{3} = \frac{3 + t + 5}{2} = \frac{-t + 1}{1}.$$

So, we need

$$\frac{13 + 2t}{3} = \frac{t + 8}{2} \quad \text{and} \quad \frac{13 + 2t}{3} = \frac{-t + 1}{1}.$$

We need

$$26 + 4t = 3t + 24 \quad \text{and} \quad 13 + 2t = -3t + 3.$$

Both equations hold for $t = -2$. Our position at $t = -2$ is

$(1, 1, 2)$.

We check that this point satisfies the equations of the first line:

$$\frac{1-5}{2} = \frac{1-3}{1} = \frac{2}{-1}.$$

We check that this point satisfies the equations of the second line:

$$\frac{1+8}{3} = \frac{1+5}{2} = \frac{2+1}{1}.$$

9. Compute the directional derivative $D_{\vec{u}} f$ at the point $(3, 2)$ in the direction of the unit vector $\vec{u} = \frac{5}{13} \vec{i} + \frac{12}{13} \vec{j}$ for $f(x, y) = 3x^2y^4$.

$$\begin{aligned} D_{\vec{u}} f(3, 2) &= \vec{\nabla} f(3, 2) \cdot \vec{u} = (6xy^4 \vec{i} + 12x^2y^3) \Big|_{(3,2)} \cdot \vec{u} \\ &= \left((18)(16) \vec{i} + (108)(8) \vec{j} \right) \cdot \left(\frac{5}{13} \vec{i} + \frac{12}{13} \vec{j} \right) = \frac{(18)(16)(5) + (108)(8)(12)}{13} \end{aligned}$$

10. Where does the line normal to $x^2 + 2y^2 + 3z^2 = 9$ at $(2, 1, -1)$ intersect $2x + y - z + 3 = 0$?

Gradients are perpendicular to level sets. The ellipsoid is level 9 of the function which sends (x, y, z) to $x^2 + 2y^2 + 3z^2$. The gradient of the left side is $2x \vec{i} + 4y \vec{j} + 6z \vec{k}$. The gradient evaluated at $(2, 1, -1)$ is $4 \vec{i} + 4 \vec{j} - 6 \vec{k}$. The normal line is

$$\begin{cases} x = 2 + 4t \\ y = 1 + 4t \\ z = -1 - 6t \end{cases}$$

The line hits the plane when

$$2(2 + 4t) + (1 + 4t) - (-1 - 6t) + 3 = 0;$$

that is, $t = -1/2$. The normal line hits the plane at the point $\boxed{(0, -1, 2)}$. Check that $(0, -1, 2)$ is on the plane: $0 - 1 - 2 + 3 = 0$. The vector from $(2, 1, -1)$ to $(0, -1, 2)$ is $\langle -2, -2, 3 \rangle$, which is parallel to $4 \vec{i} + 4 \vec{j} - 6 \vec{k}$.

11. Compute $\iint_R (x^2 + 2y) dA$, where R is the region between $y = x^2$ and $y = \sqrt{x}$.

A picture maybe found on a separate page. The integral is equal to

$$\int_0^1 \int_{x^2}^{\sqrt{x}} (x^2 + 2y) dy dx = \int_0^1 (x^2 y + y^2) \Big|_{x^2}^{\sqrt{x}} dx = \int_0^1 (x^{5/2} + x - 2x^4) dx =$$

$$\left(\frac{2}{7} x^{7/2} + \frac{x}{2} - \frac{2}{5} x^5 \right) \Big|_0^1 = \boxed{\frac{2}{7} + \frac{1}{2} - \frac{2}{5}}$$

12. Find the volume of the solid which is between $z = 16 - x^2 - y^2$ and the xy -plane.

The base is the circle $x^2 + y^2 = 16$ in the xy -plane. The top is $z = 16 - x^2 - y^2$. I will do the integral in polar coordinates. The volume is the integral over the base of the top, which is equal to

$$\int_0^{2\pi} \int_0^4 r(16 - r^2) dr d\theta = \int_0^{2\pi} \int_0^4 (16r - r^3) dr d\theta = \int_0^{2\pi} (8r^2 - r^4/4) \Big|_0^4 d\theta$$

$$= \int_0^{2\pi} (8r^2 - r^4/4) \Big|_0^4 d\theta = (8(16) - 16(4))\theta \Big|_0^{2\pi} = 16(4)2\pi = \boxed{128\pi}.$$

13. Compute $\iint_R x^2 dA$, where R is the region between $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

I will do this integral in polar coordinates. The integral is equal to

$$\int_0^{2\pi} \int_1^2 r^3 \cos^2 \theta dr d\theta = \int_0^{2\pi} \frac{r^4}{4} \frac{1 + \cos 2\theta}{2} \Big|_1^2 d\theta = \frac{15}{8} \left(\theta + \frac{\sin 2\theta}{2} \right) \Big|_0^{2\pi}$$

$$= \frac{15}{8}(2\pi) = \boxed{\frac{15\pi}{4}}.$$

14. Compute $\int_0^2 \int_0^{\sqrt{4-y^2}} x^2 dx dy$.

This integral is over the quarter circle in the first quadrant of the circle of radius 2, with center at the origin. I will do the integral in polar coordinates. The integral is equal to

$$\int_0^{\pi/2} \int_0^2 r^3 \cos^2 \theta dr d\theta = \int_0^{\pi/2} \frac{r^4}{4} \frac{1 + \cos 2\theta}{2} \Big|_0^2 d\theta = \left(2\theta + \frac{\sin 2\theta}{2} \right) \Big|_0^{\pi/2} = \boxed{\pi}.$$

15. Compute $\int_C (x + y + z) dx + x dy - yz dz$, where C is the line segment from $(1, 2, 1)$ to $(2, 1, 0)$.

I will parameterize the line segment by letting (x, y, z) be the point with the property that the vector $\overrightarrow{(1, 2, 1)(x, y, z)}$ is equal to t times the vector $\overrightarrow{(1, 2, 1)(2, 1, 0)}$. That is, $\langle x - 1, y - 2, z - 1 \rangle = t \langle 1, -1, -1 \rangle$. In other words, $x = t + 1$, $y = -t + 2$, and $z = -t + 1$ for $0 \leq t \leq 1$. The integral is equal to

$$\begin{aligned} & \int_0^1 \left((t + 1 - t + 2 - t + 1) + (t + 1)(-1) - (-t + 2)(-t + 1)(-1) \right) dt \\ &= \int_0^1 (4 - t - t - 1 + t^2 - 3t + 2) dt = \int_0^1 (t^2 - 5t + 5) dt = \left(\frac{t^3}{3} - \frac{5t^2}{2} + 5t \right) \Big|_0^1 \\ &= \boxed{\frac{1}{3} - \frac{5}{2} + 5.} \end{aligned}$$

16. Let $\vec{a} = 1\vec{i} + 2\vec{j} + 3\vec{k}$ and $\vec{b} = 4\vec{i} + 4\vec{j} + 10\vec{k}$. Find vectors \vec{u} and \vec{v} with $\vec{b} = \vec{u} + \vec{v}$, \vec{u} parallel to \vec{a} , and \vec{v} perpendicular to \vec{a} . (Every number in the answer is an integer. If you have fractions, either you can rid of them or you have made a mistake.) **Check your answer**

The vector \vec{u} is equal to

$$\begin{aligned} \text{proj}_{\vec{a}} \vec{b} &= \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a} = \frac{4 + 8 + 30}{1 + 4 + 9} \vec{a} = \frac{42}{14} \vec{a} = 3(1\vec{i} + 2\vec{j} + 3\vec{k}) \\ &= \boxed{3\vec{i} + 6\vec{j} + 9\vec{k} = \vec{u}} \end{aligned}$$

and

$$\vec{v} = \vec{b} - \vec{u} = 4\vec{i} + 4\vec{j} + 10\vec{k} - (3\vec{i} + 6\vec{j} + 9\vec{k}) = \boxed{\vec{i} - 2\vec{j} + \vec{k} = \vec{v}}.$$

Check that $\vec{v} \cdot \vec{a} = 0$: $1 - 4 + 3 = 0$.

17. Graph and name $x^2 + y^2 - z^2 = 1$ in 3-space.

This is a hyperboloid of one sheet. The picture appears on a separate page.

18. Graph and describe the graph of $yz = 0$ in 3-space.

The graph is the union of the xz -plane together with the xy -plane. The picture appears on a separate page.

19. Find the equation of the line tangent to the curve parameterized by $\vec{r}(t) = 3t^2 \vec{i} + t^3 \vec{j}$ at $t = 2$

At $t = 2$, the position is $(12, 8)$. We see that $\vec{r}'(t) = 6t \vec{i} + 3t^2 \vec{j}$; so, $\vec{r}'(2) = 12 \vec{i} + 12 \vec{j}$. The tangent line is

$$x = 12 + 12t, y = 8 + 12t, z = 0.$$

20. Find the equation of the plane tangent to $z = x^2 + y^2$ at the point where $x = 3$ and $y = 4$.

When $x = 3$ and $y = 4$, the z -coordinate of the point is 25. Gradients are perpendicular to level sets. The surface is level zero of the function $(x, y, z) \mapsto x^2 + y^2 - z$. The gradient of the defining function is $2x \vec{i} + 2y \vec{j} - \vec{k}$. The gradient of the defining function, evaluated at $(3, 4)$ is $6 \vec{i} + 8 \vec{j} - \vec{k}$. The tangent plane is

$$6(x - 3) + 8(y - 4) - (z - 25) = 0.$$