

Math 241 Exam 3 Spring 2008 Solutions

Please leave room in the upper left corner for the staple.

**TAKE THESE QUESTIONS HOME WITH YOU WHEN YOU LEAVE.
I WILL POST SOLUTIONS LATER TODAY.**

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 7 problems. Most of the problems are worth 7 points. The exam is worth 50 points. SHOW your work. Make your work be coherent and clear. Write in complete sentences whenever this is possible. **CIRCLE** your answer. **CHECK** your answer whenever possible. **No Calculators.**

1. **Find the directional derivative of $f(x, y) = xe^{xy}$ at the point $(2, 3)$ in the direction of the vector $\vec{a} = 3\vec{i} + 4\vec{j}$.**

Let \vec{u} be the unit vector in the direction of \vec{a} . So, $\vec{u} = \vec{a}/\|\vec{a}\| = \vec{a}/5$. We have

$$\begin{aligned} D_{\vec{u}} f(2, 3) &= \vec{\nabla} f(2, 3) \cdot \vec{u} = ((xye^{xy} + e^{xy})\vec{i} + x^2e^{xy}\vec{j})|_{(2,3)} \cdot \vec{u} \\ &= ((6e^6 + e^6)\vec{i} + 4e^6\vec{j}) \cdot (3\vec{i} + 4\vec{j})/5 = e^6(21 + 16)/5 = \boxed{37e^6/5.} \end{aligned}$$

2. **Find the equation of the plane tangent to $z = x^2 + y^2$ when $x = 1$ and $y = 2$.**

Gradients are perpendicular to level sets. So write the surface as a level set: $0 = x^2 + y^2 - z$. Let $f(x, y, z)$ be the function $f(x, y, z) = x^2 + y^2 - z$. Our surface is the level set $f = 0$. We have $\vec{\nabla} f(1, 2, 5)$ is perpendicular to the tangent plane. We compute

$$\vec{\nabla} f(1, 2, 5) = (2x\vec{i} + 2y\vec{j} - \vec{k})(1, 2, 5) = 2\vec{i} + 4\vec{j} - \vec{k}.$$

The tangent plane passes through $(1, 2, 5)$ and is perpendicular to $2\vec{i} + 4\vec{j} - \vec{k}$. The tangent plane is

$$\boxed{2(x - 1) + 4(y - 2) - (z - 5) = 0.}$$

3. **Find all relative maxima, relative minima, and saddle points of $f(x, y) = y^2 + xy + 3y + 2x + 3$.**

We compute

$$f_x = y + 2, \quad f_y = 2y + x + 3, \quad f_{xx} = 0, \quad f_{xy} = 1, \quad f_{yy} = 2.$$

We see that both partial derivatives f_x and f_y are zero when $y + 2 = 0$ and $2y + x + 3 = 0$. This happens when $y = -2$ and $x = 1$. We see that $f_{xx}f_{yy} - f_{xy}^2$ is always -1 . We conclude that $(1, -2, 3)$ is a saddle point of $z = f(x, y)$.

4. (8 points) Find the points on the sphere $x^2 + y^2 + z^2 = 36$ that are closest to and farthest from the point $(1, 2, 2)$.

We must find the extreme points of the function

$$f(x, y, z) = (x - 1)^2 + (y - 2)^2 + (z - 2)^2$$

subject to the constraint $g(x, y, z) = 36$, where $g(x, y, z) = x^2 + y^2 + z^2$. The constraint is bounded, the constraint has no boundary, and $\vec{\nabla}g$ is never zero on the constraint. Thus, the maximum and the minimum of f on the constraint occur at points where $\vec{\nabla}f = \lambda \vec{\nabla}g$ for some number λ . We find all points on $g = 36$ where

$$2(x - 1) \vec{i} + 2(y - 2) \vec{j} + 2(z - 2) \vec{k} = \lambda(2x \vec{i} + 2y \vec{j} + 2z \vec{k}).$$

So, we solve

$$\begin{cases} 2(x - 1) = 2x\lambda \\ 2(y - 2) = 2y\lambda \\ 2(z - 2) = 2z\lambda \\ x^2 + y^2 + z^2 = 36 \end{cases}$$

simultaneously. Notice that λ can not equal 1 because $2 \neq 0$. We solve

$$\begin{cases} (1 - \lambda)x = 1 \\ (1 - \lambda)y = 2 \\ (1 - \lambda)z = 2 \\ x^2 + y^2 + z^2 = 36 \end{cases}$$

simultaneously. We solve

$$\begin{cases} x = 1/(1 - \lambda) \\ y = 2/(1 - \lambda) \\ z = 2/(1 - \lambda) \\ x^2 + y^2 + z^2 = 36 \end{cases}$$

simultaneously. We solve

$$\begin{cases} x = 1/(1 - \lambda) \\ y = 2/(1 - \lambda) \\ z = 2/(1 - \lambda) \\ \frac{1}{(1-\lambda)^2}(1 + 4 + 4) = 36 \end{cases}$$

simultaneously. We solve

$$\begin{cases} x = 1/(1 - \lambda) \\ y = 2/(1 - \lambda) \\ z = 2/(1 - \lambda) \\ \frac{1}{(1-\lambda)^2} = 4 \end{cases}$$

simultaneously. We solve

$$\begin{cases} x = 1/(1 - \lambda) \\ y = 2/(1 - \lambda) \\ z = 2/(1 - \lambda) \\ \frac{1}{4} = (1 - \lambda)^2 \end{cases}$$

simultaneously. We solve

$$\begin{cases} x = 1/(1 - \lambda) \\ y = 2/(1 - \lambda) \\ z = 2/(1 - \lambda) \\ \pm\frac{1}{2} = (1 - \lambda) \end{cases}$$

simultaneously. So, λ is equal to $1/2$ or $3/2$. If $\lambda = 1/2$, then the point is $(2, 4, 4)$. If $\lambda = 3/2$, then the point is $(-2, -4, -4)$. We see that $f(2, 4, 4) = 9$ and $f(-2, -4, -4) = 81$. So

$(2, 4, 4)$ is the point on $x^2 + y^2 + z^2 = 36$ closest to $(1, 2, 2)$
 $(-2, -4, -4)$ is the point on $x^2 + y^2 + z^2 = 36$ farthest from $(1, 2, 2)$.

5. **Find** $\iint_R \sin(y^3) dA$, where R is the region in the xy -plane bounded by $y = \sqrt{x}$, $y = 2$, and $x = 0$.

Look at the picture. The integral is equal to

$$\int_0^2 \int_0^{y^2} \sin(y^3) dx dy = \int_0^2 y^2 \sin(y^3) dy = -(\cos(y^3))/3 \Big|_0^2 = \boxed{(1/3)(1 - \cos 8)}.$$

6. **Find the volume of the region between $z = 9 - x^2 - y^2$ and $z = 0$.**

Look at the picture. The volume is equal to

$$\int_0^{2\pi} \int_0^3 r(9 - r^2) dr d\theta = \int_0^{2\pi} (9r^2/2 - r^4/4) \Big|_0^3 d\theta = 2\pi(81/2 - 81/4) = 2\pi(81/4)$$

$$= \boxed{81\pi/2.}$$

7. **Find $\iiint_G (1 - x^2 - y^2 - z^2) dV$, where G is the region inside the sphere $x^2 + y^2 + z^2 = 1$.**

I use spherical coordinates. The region G is all points (ρ, θ, ϕ) with $0 \leq \rho \leq 1$, $0 \leq \theta \leq 2\pi$ and $0 \leq \phi \leq \pi$. In spherical coordinates, $\rho = \sqrt{x^2 + y^2 + z^2}$, and the Jacobian is equal to $\rho^2 \sin \phi$ so $dx dy dz$ becomes $\rho^2 \sin \phi d\rho d\phi d\theta$. The integral is equal to

$$\int_0^{2\pi} \int_0^\pi \int_0^1 (1 - \rho^2) \rho^2 \sin \phi d\rho d\phi d\theta = 2\pi \int_0^\pi (\rho^3/3 - \rho^5/5) \Big|_0^1 \sin \phi d\phi$$

$$= 2\pi(2/15)(-\cos \phi) \Big|_0^\pi = 2\pi(2/15)(-(-1) - (-1)) = \boxed{8\pi/15.}$$