

Math 241 Exam 2 Spring 2008 Solution

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 7 problems. Most of the problems are worth 7 points. The exam is worth 50 points. SHOW your work. Make your work be coherent and clear. Write in complete sentences whenever this is possible. **CIRCLE** your answer. **CHECK** your answer whenever possible. **No Calculators.**

1. **Find the directional derivative of $f(x, y) = x \ln(x + y)$ at the point $(1, 2)$ in the direction of the vector $\vec{a} = 2\vec{i} + 3\vec{j}$.**

Let \vec{u} be the unit vector in the direction of \vec{a} . So, $\vec{u} = \vec{a}/\|\vec{a}\| = \vec{a}/\sqrt{13}$. We have

$$\begin{aligned} D_{\vec{u}} f(1, 2) &= \vec{\nabla} f(1, 2) \cdot \vec{u} = \left[\left(\frac{x}{x+y} + \ln(x+y) \right) \vec{i} + \frac{x}{x+y} \vec{j} \right] (1, 2) \cdot \vec{u} \\ &= \left[(1/3 + \ln 3) \vec{i} + 1/3 \vec{j} \right] \cdot (2\vec{i} + 3\vec{j})/\sqrt{13} = \boxed{[2(1/3 + \ln 3) + 1]/\sqrt{13}}. \end{aligned}$$

2. **Find the equation of the plane tangent to $z^2 = x^2 + y^2$ at the point $(3, 4, 5)$.**

Gradients are perpendicular to level sets. So write the surface as a level set: $0 = x^2 + y^2 - z^2$. Let $f(x, y, z)$ be the function $f(x, y, z) = x^2 + y^2 - z^2$. Our surface is the level set $f = 0$. We have $\vec{\nabla} f(3, 4, 5)$ is perpendicular to the tangent plane. We compute

$$\vec{\nabla} f(3, 4, 5) = (2x\vec{i} + 2y\vec{j} - 2z\vec{k})(3, 4, 5) = 6\vec{i} + 8\vec{j} - 10\vec{k}.$$

The tangent plane passes through $(3, 4, 5)$ and is perpendicular to $6\vec{i} + 8\vec{j} - 10\vec{k}$. The tangent plane is

$$\boxed{6(x-3) + 8(y-4) - 10(z-5) = 0.}$$

3. **Find all points of intersection of the line $x = -1 + t$, $y = 2 + t$, $z = 2t + 7$ and the surface $z = x^2 + y^2$.**

I think of a creature walking along the line. The position of the creature is given by: at time t the x -coordinate of the creature is $x = -1 + t$; the y -coordinate of the creature is $y = 2 + t$ and the z -coordinate is $z = 2t + 7$. We first find out WHEN the creature is on the surface. In other words, we solve

$$\begin{aligned} 2t + 7 &= (-1 + t)^2 + (2 + t)^2 \\ 2t + 7 &= 1 - 2t + t^2 + 4 + 4t + t^2 \\ 0 &= 2t^2 - 2 = 2(t^2 - 1) = 2(t - 1)(t + 1). \end{aligned}$$

The creature stands on the surface at time $t = -1$ and also at time $t = 1$. At $t = 1$ the creature stands on $(0, 3, 9)$, at time $t = -1$, the creature stands on $(-2, 1, 5)$. Both points are on the surface because $9 = 0 + 9$ and $5 = 4 + 1$.

4. **Find the equation of the plane that contains the lines $x = -2 + t$, $y = 3 + 2t$, $z = 4 - t$, and $x = 3 - t$, $y = 4 - 2t$, $z = t$.**

The two lines are not equal because $P = (-2, 3, 4)$ is on the first line but not the second line. The vector $\vec{v} = \vec{i} + 2\vec{j} - \vec{k}$ is parallel to the first line. The vector $\vec{w} = -\vec{i} - 2\vec{j} + \vec{k}$ is parallel to the second line. The vector \vec{w} is a multiple of \vec{v} . Thus the two lines are parallel and there really is exactly one plane which contains them.

Observe that the point $Q = (3, 4, 0)$ is on the second line. We see that \vec{PQ} and \vec{v} are both parallel to the plane. So

$$\vec{PQ} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 5 & 1 & -4 \\ 1 & 2 & -1 \end{vmatrix} = 7\vec{i} + \vec{j} + 9\vec{k}$$

is parallel to the plane. The plane is

$$7(x - 3) + (y - 4) + 9z = 0,$$

which is the same as

$$7x + y + 9z = 25.$$

We check

$$7(-2 + t) + (3 + 2t) + 9(4 - t) = 25 \checkmark$$

and

$$7(3 - t) + (4 - 2t) + 9t = 25 \checkmark.$$

5. (8 points) The temperature of a plate at the point (x, y) is $T(x, y) = 100 + x^2 - y^2$. Find the path that a heat seeking particle would travel if it starts at the point $(5, \sqrt{75})$. (The particle always moves in the direction of the greatest increase in temperature.)

Let $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j}$ give the position of the object at time t . So, the velocity of the object at time t is $\vec{r}'(t) = x'(t)\vec{i} + y'(t)\vec{j}$. The velocity vector points in the direction of motion at time t . On the other hand, at every moment the direction of motion is perpendicular to whatever level set happens to contain the particle. Gradients are perpendicular to level sets. We know $\vec{\nabla}T = 2x\vec{i} - 2y\vec{j}$. So, the velocity vector of the particle at time t is a multiple of $\vec{\nabla}T$ at the point $(x(t), y(t))$. In other words,

$$x'(t)\vec{i} + y'(t)\vec{j} = c(t)(2x(t)\vec{i} - 2y(t)\vec{j}).$$

We solve the system of differential equations:

$$x'(t) = 2c(t)x(t) \quad y'(t) = -2c(t)y(t).$$

This is the same as

$$\frac{x'(t)}{x(t)} = 2c(t) \quad \text{and} \quad \frac{y'(t)}{y(t)} = -2c(t).$$

Integrate both sides with respect to t :

$$\int \frac{x'(t)}{x(t)} dt = \int 2c(t) dt \quad \text{and} \quad \int \frac{y'(t)}{y(t)} dt = \int -2c(t) dt,$$

to get

$$\ln|x(t)| = 2C(t) + c_1 \quad \text{and} \quad \ln|y(t)| = -2C(t) + c_2$$

where $C(t)$ is any fixed anti-derivative of $c(t)$. Exponentiate to see

$$|x(t)| = e^{c_1} (e^{C(t)})^2 \quad \text{and} \quad |y(t)| = e^{c_2} (e^{C(t)})^{-2}.$$

So

$$x(t) = \pm e^{c_1} (e^{C(t)})^2 \quad \text{and} \quad y(t) = \pm e^{c_2} (e^{C(t)})^{-2}.$$

Let K_1 be the constant $\pm e^{c_1}$, K_2 be the constant $\pm e^{c_2}$, and $\mathcal{C}(t)$ be the function $(e^{C(t)})^2$. We have

$$x(t) = K_1 \mathcal{C}(t) \quad \text{and} \quad y(t) = \frac{K_2}{\mathcal{C}(t)}.$$

Eliminate the parameter by using

$$\mathcal{C}(t) = \frac{K_2}{y(t)}$$

to see that the path of the object is

$$x(t) = K_1 \frac{K_2}{y(t)}.$$

In other words, the path of the object is $xy = K$, where K is the constant $K_1 K_2$. The point $(5, \sqrt{75})$ is on the path of the object, so $5\sqrt{75} = K$ and the path of the object is $\boxed{xy = 5\sqrt{75}}.$

6.

(a) **Find** $\lim_{\substack{(x,y) \rightarrow (0,0) \\ \text{along } y=3x}} \frac{x^3y}{x^6+2y^2}.$

We see that

$$\begin{aligned} \lim_{\substack{(x,y) \rightarrow (0,0) \\ \text{along } y=3x}} \frac{x^3y}{x^6+2y^2} &= \lim_{x \rightarrow 0} \frac{x^3(3x)}{x^6+2(3x)^2} = \lim_{x \rightarrow 0} \frac{3x^4}{x^6+18x^2} = \lim_{x \rightarrow 0} \frac{3x^4}{x^2(x^4+18)} \\ &= \lim_{x \rightarrow 0} \frac{3x^2}{(x^4+18)} = \frac{0}{18} = \boxed{0}. \end{aligned}$$

(b) **Find** $\lim_{\substack{(x,y) \rightarrow (0,0) \\ \text{along } y=x^3}} \frac{x^3y}{x^6+2y^2}.$

We see that

$$\lim_{\substack{(x,y) \rightarrow (0,0) \\ \text{along } y=x^3}} \frac{x^3y}{x^6+2y^2} = \lim_{x \rightarrow 0} \frac{x^3x^3}{x^6+2(x^3)^2} = \lim_{x \rightarrow 0} \frac{x^6}{x^6+2x^6} = \lim_{x \rightarrow 0} \frac{x^6}{3x^6} = \lim_{x \rightarrow 0} \frac{1}{3} = \boxed{\frac{1}{3}}.$$

7. Let $\vec{a} = \vec{i} + 2\vec{j} + 3\vec{k}$ and $\vec{b} = 3\vec{i} + 7\vec{j} + 13\vec{k}$. Find vectors \vec{u} and \vec{v} with $\vec{b} = \vec{u} + \vec{v}$, \vec{u} parallel to \vec{a} , and \vec{v} perpendicular to \vec{a} . Please check your answer. We see that \vec{u} is the projection of \vec{b} onto \vec{a} ; so

$$\vec{u} = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a} = \frac{56}{14} \vec{a} = 4(\vec{i} + 2\vec{j} + 3\vec{k});$$

so

$$\boxed{\overrightarrow{\mathbf{u}} = 4\overrightarrow{\mathbf{i}} + 8\overrightarrow{\mathbf{j}} + 12\overrightarrow{\mathbf{k}}.}$$

We see that

$$\overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{u}} = 3\overrightarrow{\mathbf{i}} + 7\overrightarrow{\mathbf{j}} + 13\overrightarrow{\mathbf{k}} - (4\overrightarrow{\mathbf{i}} + 8\overrightarrow{\mathbf{j}} + 12\overrightarrow{\mathbf{k}}) = \boxed{-\overrightarrow{\mathbf{i}} - \overrightarrow{\mathbf{j}} + \overrightarrow{\mathbf{k}}.}$$

It is clear that $\overrightarrow{\mathbf{b}} = \overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{u}}$ parallel to $\overrightarrow{\mathbf{a}}$. We check $\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{a}} = -1 - 2 + 3 = 0 \checkmark$.