Quiz for March 28, 2008

Find the absolute extreme points of $f(x, y, z)=2 x+y-2 z$ subject to the constraint $x^{2}+y^{2}+z^{2}=4$.
Answer: Let $g(x, y, z)=x^{2}+y^{2}+z^{2}$. We see that $\vec{\nabla} g=2 x \vec{i}+2 y \vec{j}+2 z \vec{k}$. The only point where $\vec{\nabla} g=0$ is the origin and the origin is not on the constraint $g=4$. There are no endpoints. So, the absolute extreme points of f on $g=4$ occur at points where $\vec{\nabla} f=\lambda \vec{\nabla} g$ for some constant λ.

We find all points on $g=4$ with $\vec{\nabla} f=\lambda \vec{\nabla} g$ for some constant λ.
We find all points on $g=4$ with $2 \overrightarrow{\boldsymbol{i}}+\overrightarrow{\boldsymbol{j}}-2 \overrightarrow{\boldsymbol{k}}=\lambda(2 x \overrightarrow{\boldsymbol{i}}+2 y \overrightarrow{\boldsymbol{j}}+2 z \overrightarrow{\boldsymbol{k}})$ for some constant λ.

We find all points (x, y, z) and all numbers λ with

$$
\left\{\begin{array}{c}
x^{2}+y^{2}+z^{2}=4 \\
2=2 x \lambda \\
1=2 y \lambda \\
-2=2 z \lambda
\end{array}\right.
$$

We see that λ can not be zero (because $2 \neq 0$) so we find all points (x, y, z) and all numbers λ with

$$
\left\{\begin{array}{c}
x^{2}+y^{2}+z^{2}=4 \\
\frac{1}{\lambda}=x \\
\frac{1}{2 \lambda}=y \\
\frac{-1}{\lambda}=z
\end{array}\right.
$$

We find all points (x, y, z) and all numbers λ with

$$
\left\{\begin{array}{c}
\left(\frac{1}{\lambda}\right)^{2}+\left(\frac{1}{2 \lambda}\right)^{2}+\left(\frac{-1}{\lambda}\right)^{2}=4 \\
\frac{1}{\lambda}=x \\
\frac{1}{2 \lambda}=y \\
\frac{-1}{\lambda}=z
\end{array}\right.
$$

We find all points (x, y, z) and all numbers λ with

$$
\left\{\begin{array}{c}
\left(\frac{1}{\lambda}\right)^{2}(1+1 / 4+1)=4 \\
\frac{1}{\lambda}=x \\
\frac{1}{2 \lambda}=y \\
\frac{-1}{\lambda}=z
\end{array}\right.
$$

We find all points (x, y, z) and all numbers λ with

$$
\left\{\begin{array}{c}
\frac{9}{16}=\lambda^{2} \\
\frac{1}{\lambda}=x \\
\frac{1}{2 \lambda}=y \\
\frac{-1}{\lambda}=z .
\end{array}\right.
$$

If $\lambda=3 / 4$, then $(x, y, z)=(4 / 3,2 / 3,-4 / 3)$ and $f(x, y, z)=6$
If $\lambda=-3 / 4$, then $(x, y, z)=(-4 / 3,-2 / 3,4 / 3)$ and $f(x, y, z)=-6$.
We conclude that the maximum value of f on $g=4$ is 6 and $f(4 / 3,2 / 3,-4 / 3)=6$.
Also, the minimum value of f on $g=4$ is -6 and this value occurs at $f(-4 / 3,-2 / 3,4 / 3)=-6$.

