Quiz for March 28, 2008

Find the absolute extreme points of f(x, y, z) = 2x + y - 2z subject to the constraint $x^2 + y^2 + z^2 = 4.$

Answer: Let $g(x, y, z) = x^2 + y^2 + z^2$. We see that $\overrightarrow{\nabla} g = 2x \overrightarrow{i} + 2y \overrightarrow{j} + 2z \overrightarrow{k}$. The only point where $\overrightarrow{\nabla} g = 0$ is the origin and the origin is not on the constraint g = 4. There are no endpoints. So, the absolute extreme points of f on g = 4 occur at points where $\overrightarrow{\nabla} f = \lambda \overrightarrow{\nabla} g$ for some constant λ .

We find all points on g = 4 with $\overrightarrow{\nabla} f = \lambda \overrightarrow{\nabla} g$ for some constant λ . We find all points on g = 4 with $2\overrightarrow{i} + \overrightarrow{j} - 2\overrightarrow{k} = \lambda(2x\overrightarrow{i} + 2y\overrightarrow{j} + 2z\overrightarrow{k})$ for some constant λ .

We find all points (x, y, z) and all numbers λ with

$$\begin{cases} x^2 + y^2 + z^2 = 4\\ 2 = 2x\lambda\\ 1 = 2y\lambda\\ -2 = 2z\lambda. \end{cases}$$

We see that λ can not be zero (because $2 \neq 0$) so we find all points (x, y, z) and all numbers λ with

$$\begin{cases} x^2 + y^2 + z^2 = 4\\ \frac{1}{\lambda} = x\\ \frac{1}{2\lambda} = y\\ \frac{-1}{\lambda} = z. \end{cases}$$

We find all points (x, y, z) and all numbers λ with

$$\begin{cases} \left(\frac{1}{\lambda}\right)^2 + \left(\frac{1}{2\lambda}\right)^2 + \left(\frac{-1}{\lambda}\right)^2 = 4\\ \frac{1}{\lambda} = x\\ \frac{1}{2\lambda} = y\\ \frac{-1}{\lambda} = z. \end{cases}$$

We find all points (x, y, z) and all numbers λ with

$$\begin{cases} \left(\frac{1}{\lambda}\right)^2 (1+1/4+1) = 4\\ \frac{1}{\lambda} = x\\ \frac{1}{2\lambda} = y\\ \frac{-1}{\lambda} = z. \end{cases}$$

We find all points (x, y, z) and all numbers λ with

$$\begin{cases} \frac{9}{16} = \lambda^2\\ \frac{1}{\lambda} = x\\ \frac{1}{2\lambda} = y\\ \frac{-1}{\lambda} = z. \end{cases}$$

If $\lambda = 3/4$, then (x, y, z) = (4/3, 2/3, -4/3) and f(x, y, z) = 6If $\lambda = -3/4$, then (x, y, z) = (-4/3, -2/3, 4/3) and f(x, y, z) = -6.

We conclude that the maximum value of f on $g = 4$ is 6
and $f(4/3, 2/3, -4/3) = 6$.
Also, the minimum value of f on $g = 4$ is -6
and this value occurs at $f(-4/3, -2/3, 4/3) = -6$.