## Quiz for February 1, 2008

Consider the two lines

$$
\begin{gathered}
L_{1}: x+1=4 t, y-3=t, z-1=0 \\
L_{2}: x+13=12 t, y-1=6 t, z-2=3 t
\end{gathered}
$$

(a) Find the point of intersection of the two lines.
(b) Find the plane determined by the two intersecting lines. CHECK your answer.
First we work on (a). Suppose $t_{1}$ puts $L_{1}$ at the point $(x, y, z)$ and $t_{2}$ puts $L_{2}$ at the same point $(x, y, z)$. We first find $t_{1}$ and $t_{2}$. These values of $t$ must satisfy all three of the equations:

$$
\left\{\begin{array}{c}
4 t_{1}-1=12 t_{2}-13 \\
t_{1}+3=6 t_{2}+1 \\
1=3 t_{2}+2
\end{array}\right.
$$

The bottom equation tells us that $t_{2}=-1 / 3$. The middle equation tells us that $t_{1}=-4$. These values work the first equation since: $4(-4)-1=12(-1 / 3)-13$. The point of intersection is $(-17,-1,1)$. (This point satisfies equations for both $L_{1}$ and $L_{2}$.)

Now we work on (b). We want the plane through $(-17,-1,1)$ that is parallel to $<4,1,0\rangle$ and $\langle 12,6,3\rangle$. We want the plane through $(-17,-1,1)$ that is normal to

$$
\begin{gathered}
<4,1,0>\times<12,6,3>=\left|\begin{array}{ccc}
\bar{i} & \bar{j} & \bar{k} \\
4 & 1 & 0 \\
12 & 6 & 3
\end{array}\right| \\
=\bar{i}\left|\begin{array}{cc}
1 & 0 \\
6 & 3
\end{array}\right|-\bar{j}\left|\begin{array}{cc}
4 & 0 \\
12 & 3
\end{array}\right|+\bar{k}\left|\begin{array}{cc}
4 & 1 \\
12 & 6
\end{array}\right|=3 \bar{i}-12 \bar{j}+12 \bar{k} .
\end{gathered}
$$

The plane is

$$
3(x+17)-12(y+1)+12(z-1)=0
$$

or

$$
\begin{array}{|l|}
\hline x-4 y+4 z+9=0 . \\
\hline
\end{array}
$$

We see that line $L_{1}$ is on the proposed plane because:

$$
(4 t-1)-4(t+3)+4(1)+9=0
$$

for all $t$. We see that line $L_{2}$ is on the proposed plane because:

$$
(12 t-13)-4(6 t+1)+4(3 t+2)+9=0
$$

for all $t$.

