

Math 241, Exam 1, Fall, 2022

You should KEEP this piece of paper. Write everything on the **blank paper provided**. Return the problems **in order** (use as much paper as necessary), use **only one side** of each piece of paper. Number your pages and write your name on each page. Take a picture of your exam (for your records) just before you turn the exam in. I will e-mail your grade and my comments to you. I will keep your exam. **Fold your exam in half** before you turn it in.

The exam is worth 50 points. Each problem is worth 10 points. **Make your work coherent, complete, and correct.** Please CIRCLE your answer. Please **CHECK** your answer whenever possible.

The solutions will be posted later today.

No Calculators, Cell phones, computers, notes, etc.

(1) **Find an equation for the plane through the points $P_1 = (1, 2, 3)$, $P_2 = (1, 1, 1)$, and $P_3 = (-1, 0, 1)$. Check your answer. Make sure it is correct.**

The vector $\overrightarrow{P_1P_2}$ is equal to $-\vec{j} - 2\vec{k}$ and $\overrightarrow{P_1P_3} = -2\vec{i} - 2\vec{j} - 2\vec{k}$. We compute

$$\begin{aligned}\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3} &= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & -1 & -2 \\ -2 & -2 & -2 \end{vmatrix} = \begin{vmatrix} -1 & -2 \\ -2 & -2 \end{vmatrix} \vec{i} - \begin{vmatrix} 0 & -2 \\ -2 & -2 \end{vmatrix} \vec{j} + \begin{vmatrix} 0 & -1 \\ -2 & -2 \end{vmatrix} \vec{k} \\ &= -2\vec{i} + 4\vec{j} - 2\vec{k}.\end{aligned}$$

The plane through $(1, 2, 3)$ perpendicular to $-2\vec{i} + 4\vec{j} - 2\vec{k}$ is

$$-2(x - 1) + 4(y - 2) - 2(z - 3) = 0$$

or

$$-(x - 1) + 2(y - 2) - (z - 3) = 0$$

or

$$\boxed{-x + 2y - z = 0}.$$

Check. The point $(1, 2, 3)$ satisfies the proposed answer because

$$-1 + 2(2) - 3 = 0.$$

The point $(1, 1, 1)$ satisfies the proposed answer because

$$-1 + 2 - 1 = 0.$$

The point $(-1, 0, 1)$ satisfies the proposed answer because $-(-1) - 1 = 0$.

(2) Express $\vec{v} = 4\vec{i} + 5\vec{j}$ as the sum of a vector parallel to $\vec{w} = 2\vec{i} + 5\vec{j}$ and a vector orthogonal to \vec{w} . Check your answer. Make sure it is correct.

The projection of \vec{v} onto \vec{w} is

$$\text{proj}_{\vec{w}} \vec{v} = \frac{\vec{v} \cdot \vec{w}}{\vec{w} \cdot \vec{w}} \vec{w} = \frac{33}{29}(2\vec{i} + 5\vec{j}) = \frac{66}{29}\vec{i} + \frac{165}{29}\vec{j}.$$

We compute

$$\begin{aligned} \vec{v} - \text{proj}_{\vec{w}} \vec{v} &= (4\vec{i} + 5\vec{j}) - \left(\frac{66}{29}\vec{i} + \frac{165}{29}\vec{j}\right) \\ &= \frac{1}{29}(116\vec{i} + 145\vec{j} - 66\vec{i} - 165\vec{j}) = \frac{1}{29}(50\vec{i} - 20\vec{j}) = \frac{10}{29}(5\vec{i} - 2\vec{j}). \end{aligned}$$

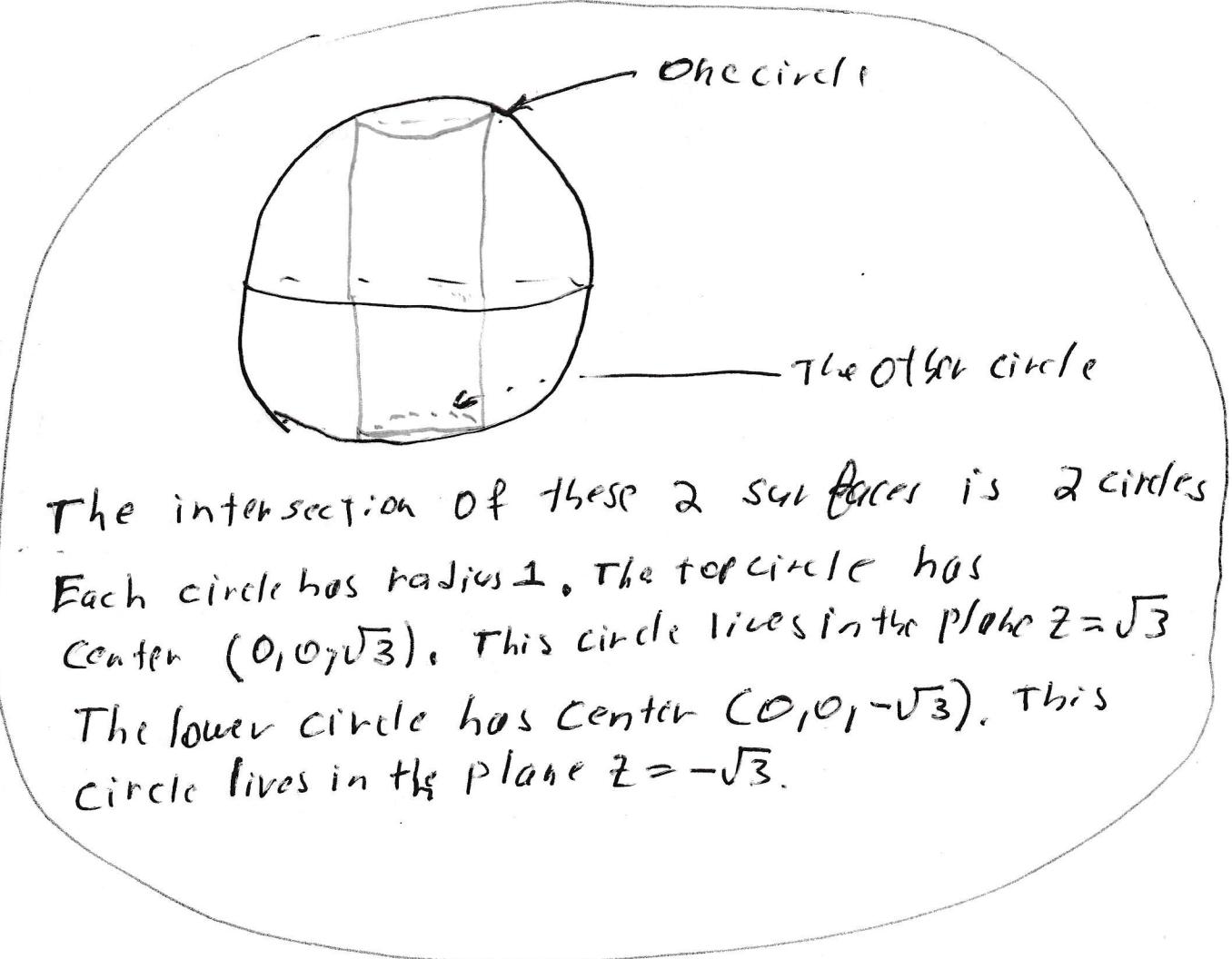
Thus

$$\vec{v} = \frac{33}{29}(2\vec{i} + 5\vec{j}) + \frac{10}{29}(5\vec{i} - 2\vec{j})$$

with $\frac{33}{29}(2\vec{i} + 5\vec{j})$ parallel to \vec{w}
 and $\frac{10}{29}(5\vec{i} - 2\vec{j})$ perpendicular to \vec{w} .

(3) Name, describe, and graph the set of all points in three-space which satisfy both equations $x^2 + y^2 + z^2 = 4$ and $x^2 + y^2 = 1$.

3 The graph of $x^2 + y^2 + z^2 = 4$ is the sphere with center $(0,0,0)$ and radius 2. The graph of $x^2 + y^2 = 1$ is the cylinder with the z -axis in its center and radius 1.



The intersection of these 2 surfaces is 2 circles. Each circle has radius 1. The top circle has center $(0,0, \sqrt{3})$. This circle lies in the plane $z = \sqrt{3}$. The lower circle has center $(0,0, -\sqrt{3})$. This circle lies in the plane $z = -\sqrt{3}$.

(4) **Find the center and radius of the sphere** $9x^2 - 6x + 9y^2 + 6y + 9z^2 - 6z = 1$.

The solution set of $9x^2 - 6x + 9y^2 + 6y + 9z^2 - 6z = 1$ is the same as the solution set of

$$9(x^2 - \frac{2}{3}x + \frac{1}{9}) + 9(y^2 + \frac{2}{3}y + \frac{1}{9}) + 9(z^2 - \frac{2}{3}z + \frac{1}{9}) = 1 + 9\frac{1}{9} + 9\frac{1}{9} + 9\frac{1}{9}$$

$$9(x - \frac{1}{3})^2 + 9(y + \frac{1}{3})^2 + 9(z - \frac{1}{3})^2 = 4$$

$$(x - \frac{1}{3})^2 + (y + \frac{1}{3})^2 + (z - \frac{1}{3})^2 = \frac{4}{9}.$$

The sphere has center $(\frac{1}{3}, -\frac{1}{3}, \frac{1}{3})$ and radius $\frac{2}{3}$.

(5) **Find the point on the plane** $2x + 3y - 7z = 1$ **which is closest to the point** $(-3, -4, 15)$.

The line perpendicular to the plane through $(-3, -4, 15)$ is

$$\begin{cases} x = -3 + 2t \\ y = -4 + 3t \\ z = 15 - 7t \end{cases}.$$

The line and the plane intersect when

$$2(-3 + 2t) + 3(-4 + 3t) - 7(15 - 7t) = 1$$

$$-6 + 4t - 12 + 9t - 105 + 49t = 1$$

$$62t = 124$$

$$t = 2$$

The point of intersection is $(1, 2, 1)$.

The proposed answer is on the plane because $2 + 6 - 7 = 1$. The vector from the proposed answer to $(-3, -4, 15)$ is $-4\vec{i} - 6\vec{j} + 14\vec{k}$ which is indeed perpendicular to the plane.