

Math 241, Exam 3, Fall, 2022

You should KEEP this piece of paper. Write everything on the **blank paper provided**. Return the problems **in order** (use as much paper as necessary), use **only one side** of each piece of paper. Number your pages and write your name on each page. Take a picture of your exam (for your records) just before you turn the exam in. I will e-mail your grade and my comments to you. I will keep your exam. **Fold your exam in half** before you turn it in.

The exam is worth 50 points. Each problem is worth 10 points. **Make your work coherent, complete, and correct.** Please **CIRCLE** your answer. Please **CHECK** your answer whenever possible.

The solutions will be posted later today.

No Calculators, Cell phones, computers, notes, etc.

(1) **What is the equation of the plane tangent to $z = x^2 + y^2$ at the point where $x = 1$ and $y = 3$?**

The z-coordinate of the point on $z = x^2 + y^2$, when $x = 1$ and $y = 3$ is $1 + 9 = 10$.

View the surface $z = x^2 + y^2$ as a level set. It is $g(x, y, z) = 0$, where $g(x, y, z) = x^2 + y^2 - z$. Gradients are perpendicular to level sets. The gradient of g is $\vec{\nabla}g = 2x\vec{i} + 2y\vec{j} - \vec{k}$. We calculate

$$\vec{\nabla}g|_{(1, 3, 10)} = 2\vec{i} + 6\vec{j} - \vec{k}.$$

The plane tangent to $z = x^2 + y^2$ at the point $(1, 3, 10)$ is

$$2(x - 1) + 6(y - 3) - (z - 10) = 0.$$

(2) **Put $3x^2 + 2y^2 - 2z^2 - 12x - 4y + 12z = 8$ in the form**

$$A(x - x_0)^2 + B(y - y_0)^2 + C(z - z_0)^2 = D,$$

where x_0, y_0, z_0, A, B, C , and D are numbers.

Observe that the points that satisfy the original equation are exactly the same as the points which satisfy

$$3(x^2 - 4x + 4) + 2(y^2 - 2y + 1) - 2(z^2 - 6z + 9) = 8 + 12 + 2 - 18$$

$$3(x - 2)^2 + 2(y - 1)^2 - 2(z - 3)^2 = 4.$$

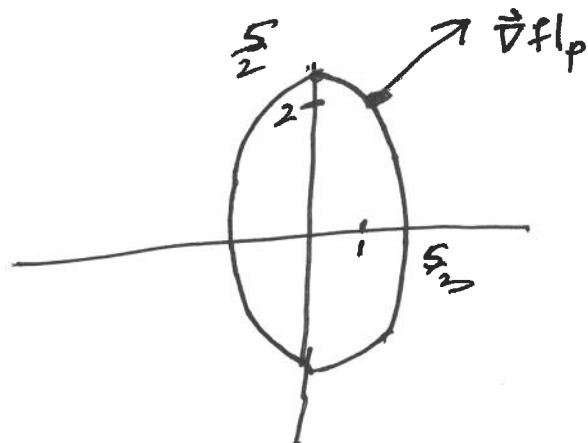
(3) Consider the function $f(x, y) = 9x^2 + 4y^2$ and the point $P = (1, 2)$.

- (a) Draw the level set $f(x, y) = c$ which contains the point P .
- (b) Calculate $\vec{\nabla} f|_P$.
- (c) Draw $\vec{\nabla} f|_P$ on your answer to (3a) with the tail on P .
- (d) Calculate the directional derivative of the function f at the point P in the direction of the vector $\vec{v} = \vec{i} + 2\vec{j}$.

#3 $f(x, y) = 9x^2 + 4y^2$ $P = (1, 2)$

④ $f(P) = 9(1)^2 + 4(2)^2 = 9 + 16 = 25$

$f(x, y) = 25$ is the ellipse $9x^2 + 4y^2 = 25$



$$\frac{x^2}{\frac{25}{9}} + \frac{y^2}{\frac{25}{4}} = 1$$

⑤ $\vec{\nabla}f = 18x\hat{i} + 8y\hat{j}$

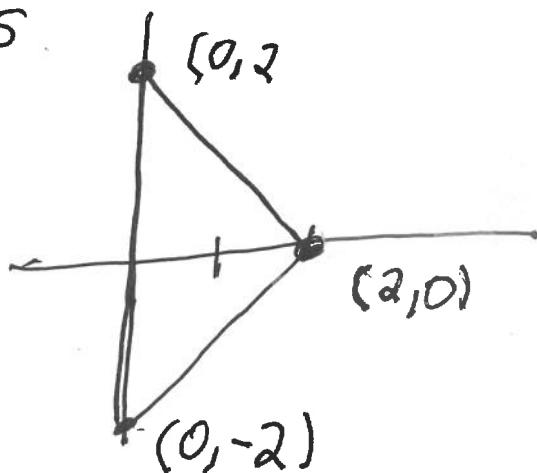
$$\vec{\nabla}f|_P = 18\hat{i} + 16\hat{j}$$

⑥ is drawn on (a) Notice that $\vec{\nabla}f|_P$ is perpendicular to $9x^2 + 4y^2 = 25$ at P.

⑦ $(D_{\hat{i}+2\hat{j}} f)|_P = \vec{\nabla}f|_P \cdot \frac{\hat{i}+2\hat{j}}{\sqrt{5}} = (18\hat{i} + 16\hat{j}) \cdot \frac{\hat{i}+2\hat{j}}{\sqrt{5}}$

$$= \boxed{\frac{18+32}{\sqrt{5}}}$$

#5



(4) **Find all local maximum points, local minimum points, and saddle points of $f(x, y) = (y - 2)x^2 - y^2$.**

We compute $f_x = 2x(y - 2)$ and $f_y = x^2 - 2y$. Both partials are zero when $x = 0$ (and $y = 0$) and when $y = 2$ (and $x^2 = 4$). There are three such points, namely, $(0, 0)$, $(2, 2)$, and $(-2, 2)$. We apply the second derivative test at each of these critical points.

$$f_{xx} = 2(y - 2), \quad f_{xy} = 2x, \quad f_{yy} = -2.$$

We calculate the Hessian

$$H = f_{xx}f_{yy} - f_{xy}^2 = 2(y - 2)(-2) - 4x^2 = -4y^2 + 8 - 4x^2.$$

We see that $H(0, 0) = 8 > 0$ and $f_{xx}(0, 0) = -4$, $H(2, 2) < 0$ and $H(-2, 2) < 0$. we conclude that

$(0, 0, 0)$ is a local maximum and $(2, 2, -4)$ and $(-2, 2, -4)$ are saddle points.

(5) **Find the absolute maximum points and absolute minimum points of $f(x, y) = x^2 + y^2 - 2x$ on the closed triangular region with vertices $(2, 0)$, $(0, 2)$, and $(0, -2)$.**

We drew the triangle on page 3. Of course, we save the three vertices $(2, 0)$, $(0, 2)$, and $(0, -2)$ as points of interest in the final step. We see that the boundary of the region is

$$x = 0 \text{ for } -2 \leq y \leq 2$$

$$y = x - 2 \text{ for } 0 \leq x \leq 2$$

$$y = -x + 2 \text{ for } 0 \leq x \leq 2.$$

We compute $f_x = 2x - 2$ and $f_y = 2y$. We see that $f_x = 0$ and $f_y = 0$ at $(x, y) = (1, 0)$. The point $(1, 0)$ is a point of interest.

The restriction of f to $x = 0$ is $f|_{x=0} = y^2$. We compute that $\frac{d}{dy}(f|_{x=0}) = 2y$ and this derivative vanishes at $(x, y) = (0, 0)$. The point $(0, 0)$ is a point of interest.

The restriction of f to $y = x - 2$ is $f|_{y=x-2} = x^2 + (x - 2)^2 - 2x$. We compute that $\frac{d}{dx}(f|_{y=x-2}) = 2x + 2(x - 2) - 2 = 4x - 6$, which is zero at $(x, y) = (\frac{3}{2}, -\frac{1}{2})$. The point $(\frac{3}{2}, -\frac{1}{2})$ is a point of interest.

The restriction of f to $y = -x + 2$ is $f|_{y=-x+2} = x^2 + (-x + 2)^2 - 2x$. We compute that $\frac{d}{dx}(f|_{y=-x+2}) = 2x + 2(x - 2) - 2 = 4x - 6$, which is zero at $(x, y) = (\frac{3}{2}, \frac{1}{2})$. The point $(\frac{3}{2}, \frac{1}{2})$ is a point of interest.

We calculate

$$f(2, 0) = 0$$

$$f(0, 2) = 4$$

$$f(0, -2) = 4$$

$$f(1, 0) = -1$$

$$f(0, 0) = 0$$

$$f\left(\frac{3}{2}, -\frac{1}{2}\right) = -\frac{1}{2}$$

$$f\left(\frac{3}{2}, \frac{1}{2}\right) = -\frac{1}{2}$$

The maximum of f on the domain occurs at $(0, 2, 4)$ and $(0, -2, 4)$.
The maximum of f on the domain occurs at $(1, 0, -1)$.