Please PRINT your name _____

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.

Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will return your quiz when I next see you.

The quiz is worth 5 points. The solution will be posted on my website later today.

Quiz 8, November 20, 2024

Change the integral into polar coordinates, then integrate:

$$\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} (x+2y) \, dy \, dx$$

(You must draw the region.)

Answer: Look at the picture on the next page. The region for this integral is defined by: For each fixed θ with $\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$, *r* goes from r = 0 to $r = \sqrt{2}$. In polar coordinates *x* becomes $r \cos \theta$ and *y* becomes $r \sin \theta$, and dy dx becomes $r dr d\theta$. The original integral is equal to

$$\int_{\pi/4}^{\pi/2} \int_{0}^{\sqrt{2}} (r\cos\theta + 2r\sin\theta) r dr d\theta$$

= $\int_{\pi/4}^{\pi/2} \int_{0}^{\sqrt{2}} (r^2\cos\theta + 2r^2\sin\theta) dr d\theta$
= $\int_{\pi/4}^{\pi/2} (\frac{r^3}{3}\cos\theta + \frac{2r^3}{3}\sin\theta) \Big|_{0}^{\sqrt{2}} d\theta$
= $\int_{\pi/4}^{\pi/2} (\frac{2^{3/2}}{3}\cos\theta + \frac{2(2^{3/2})}{3}\sin\theta) d\theta$
= $(\frac{2^{3/2}}{3}\sin\theta - \frac{2(2^{3/2})}{3}\cos\theta) \Big|_{\pi/4}^{\pi/2}$
= $\frac{2^{3/2}}{3} - 0 - \frac{2^{3/2}}{3}\frac{\sqrt{2}}{2} + \frac{2(2^{3/2})}{3}\frac{\sqrt{2}}{2}$
= $\left[\frac{2^{3/2}+2}{3}\right]$

We draw y=x and $y=J_{2-x^{2}}$, Of course $y=J_{2-x^{2}}$ is the part of the circle $x^{2}ty^{2}=2$ where y is Positive

For each fixed x with O=x=1, ygoes from y=x to you the circle

Of communic this region is also described by For each fixed O with $\frac{T}{4} \leq O \leq \frac{T}{2}$, rgoes from too to $r = \sqrt{2}$.