Homework for 12.3 and 12.4

- 12.3, number 1abd: Let $\overrightarrow{v} = 2\overrightarrow{i} 4\overrightarrow{j} + \sqrt{5}\overrightarrow{k}$ and $\overrightarrow{u} = -2\overrightarrow{i} + 4\overrightarrow{j} \sqrt{5}\overrightarrow{k}$. Find $\overrightarrow{v} \cdot \overrightarrow{u}$, $|\overrightarrow{v}|$, $|\overrightarrow{u}|$, the cosine of the angle between \overrightarrow{v} and \overrightarrow{u} , and the projection of \overrightarrow{u} onto \overrightarrow{v} .
- 12.3, number 19: The picture (on the next page) makes it look like *v*₁ + *v*₂ and *v*₁ - *v*₂ are perpendicular. Does this happen all of the time? If not, what is special about the *v*₁ and *v*₂ in this picture that made it happen?
- 12.4, number 1: Find the length and direction of $\overrightarrow{u} \times \overrightarrow{v}$ and $\overrightarrow{v} \times \overrightarrow{u}$ for $\overrightarrow{u} = 2\overrightarrow{i} 2\overrightarrow{j} \overrightarrow{k}$ and $\overrightarrow{v} = \overrightarrow{i} \overrightarrow{k}$.
- 12.4, number 9: Sketch the coordinate axes and then include \vec{u} , \vec{b} , and $\vec{u} \times \vec{v}$ for $\vec{u} = \vec{i}$ and $\vec{v} = \vec{j}$
- 12.4, number 15: Let P = (1, -1, 2), Q = (2, 0, -1), and R = (0, 2, 1). Find the area of the triangle determined by the points P, Q, and R. Also find a unit vector perpendicular to the plane containing P, Q, and R.
- 12.4, number 35: Find the area of the parallelogram with vertices A = (1, 0), B = (0, 1), C = (-1, 0), and D = (0, -1).
- 12.4, number 41: Find the area of the triangle with vertices A = (0, 0), B = (-2, 3), and C = (3, 1).

