Homework for 12.1 and 12.2

- 12.1, number 1: Give a geometric description of the set of points in 3-space which satisfy x = 2 and y = 3.
- 12.1, number 5: Give a geometric description of the set of points in 3-space which satisfy $x^2 + y^2 = 4$ and z = 0.
- 12.1, number 9: Give a geometric description of the set of points in 3-space which satisfy $x^2 + y^2 + z^2 = 1$ and x = 0.
- 12.1, number 13: Give a geometric description of the set of points in 3-space which satisfy $x^2 + y^2 = 4$ and z = y.
- 12.1, number 15: Give a geometric description of the set of points in 3-space which satisfy $y = x^2$ and z = 0.
- 12.1, number 19: Describe the set of points in 3-space whose coordinates satisfy
 - (a) $x^2 + y^2 + z^2 \le 1$, (b) $x^2 + y^2 + z^2 > 1$.
- 12.1, number 23: Describe the set of points in 3-space whose coordinates satisfy
 - (a) y ≥ x² and z ≥ 0
 (b) x ≤ y² and 0 ≤ z ≤ 2.
- 12.1, number 35b: Describe the plane perpendicular to the *y*-axis at (0, -1, 0) with either one equation or two equations.
- 12.1 number 39: Describe each of the following circles in three space with either one equation or two equations. Each circle has radius two and center (0, 2, 0).
 - (a) This circle lies in the *xy*-plane.
 - (b) This circle lies in the yz-plane.
 - (c) This circle lies in the plane y = 2.
- 12.1, number 43: Describe the following circle using either one equation or two equations. The circle is the set of points which are on the plane through the point (1,1,3) perpendicular to the *z*-axis and also are on the sphere of radius 5 centered at the origin.
- 12.1, number 45: Use inequalities to describe the slab bounded by the planes z = 0 and z = 1. (The planes are included.)

- 12.1, number 53: Find the center and radius for the sphere $(x \sqrt{2})^2 + (y \sqrt{2})^2 + (z + \sqrt{2})^2 = 2.$
- 12.1, number 57: Find the center and radius for the sphere $2x^2 + 2y^2 + 2z^2 + x + y + z = 9$.
- 12.1, number 65: Find the distance from the point P = (x, y, z) to
 - (a) the *x*-axis,
 - (b) the *y*-axis, and
 - (c) the *z*-axis.
- 12.1, number 67: Find the perimeter of the triangle with vertices A = (-1, 2, 1), B = (1, -1, 3), and C = (3, 4, 5).
- 12.1, number 69: Find an equation for the set of all points equidistant from the planes y = 3 and y = -1.
- 12.2, number 9: What is the vector \overrightarrow{PQ} for P = (1,3) and Q = (2,-1)?
- 12.2, number 17: What is the vector \overrightarrow{PQ} for P = (5, 7, -1) and Q = (2, 9, -2)?
- 12.2, number 23.a: Draw $\vec{u} + \vec{v}$, where $\vec{u} = -\vec{i} + \vec{j}$ and $\vec{v} = 2\vec{i}$. (Actually, problem just drew the vectors. I made up the numbers.)
- 12.2 number 25: Express $2\overrightarrow{i} + \overrightarrow{j} 2\overrightarrow{k}$ as a number times a unit vector.
- 12.2 number 31d: Find a vector of length 7 that points in the same direction as $\overrightarrow{u} = \frac{6}{7}\overrightarrow{i} \frac{2}{7}\overrightarrow{j} + \frac{3}{7}\overrightarrow{k}$.
- 12.2 number 33: Find a vector of length 7 that has the same direction as $\overrightarrow{v} = 12\overrightarrow{i} 5\overrightarrow{k}$.
- 12.2 number 35: Let P_1 and P_2 be the points $P_1 = (-1, 1, 5)$ and $P_2 = (2, 5, 0)$.
 - (a) Find a unit vector that points in the same direction as $\overrightarrow{P_1P_2}$.
 - (b) Find the midpoint of the line segment from P_1 to P_2 .