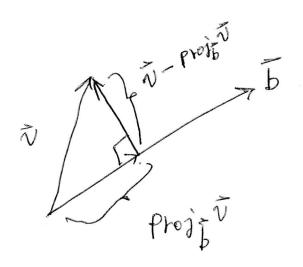
12.3 This problem is problem 3, from Exam 2, from Fall 2024. Express $\overrightarrow{v} = 3\overrightarrow{i} + \overrightarrow{j}$ as the sum of a vector parallel to $\overrightarrow{b} = 4\overrightarrow{i} + 8\overrightarrow{j}$ plus a vector perpendicular to \overrightarrow{b} . Check your answer. Make sure it is correct.

Answer: There is a picture on the next page. We compute

$$\operatorname{proj}_{\overrightarrow{\boldsymbol{b}}} \overrightarrow{\boldsymbol{v}} = \frac{\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{b}}}{\overrightarrow{\boldsymbol{b}} \cdot \overrightarrow{\boldsymbol{b}}} \overrightarrow{\boldsymbol{b}}$$

$$= \frac{12 + 8}{16 + 64} (4 \overrightarrow{\boldsymbol{i}} + 8 \overrightarrow{\boldsymbol{j}}) = \frac{1}{4} (4 \overrightarrow{\boldsymbol{i}} + 8 \overrightarrow{\boldsymbol{j}}) = \overrightarrow{\boldsymbol{i}} + 2 \overrightarrow{\boldsymbol{j}}.$$


Observe that

$$\overrightarrow{\boldsymbol{v}} - (\overrightarrow{\boldsymbol{i}} + 2\overrightarrow{\boldsymbol{j}}) = 2\overrightarrow{\boldsymbol{i}} - \overrightarrow{\boldsymbol{j}}.$$

The vector $\overrightarrow{v} = 3\overrightarrow{i} + \overrightarrow{j}$ is equal to $\overrightarrow{i} + 2\overrightarrow{j}$ plus $2\overrightarrow{i} - \overrightarrow{j}$ with $\overrightarrow{i} + 2\overrightarrow{j}$ parallel to $\overrightarrow{b} = 4\overrightarrow{i} + 8\overrightarrow{j}$ and $2\overrightarrow{i} - \overrightarrow{j}$ perpendicular to $\overrightarrow{b} = 4\overrightarrow{i} + 8\overrightarrow{j}$.

Check. We verify the three assertions:

(
$$\overrightarrow{i} + 2\overrightarrow{j}$$
) + ($2\overrightarrow{i} - \overrightarrow{j}$) = $3\overrightarrow{i} + \overrightarrow{j}$ \checkmark
($\overrightarrow{i} + 2\overrightarrow{j}$) = $\frac{1}{4}$ ($4\overrightarrow{i} + 8\overrightarrow{j}$) \checkmark
($2\overrightarrow{i} - \overrightarrow{j}$) · ($4\overrightarrow{i} + 8\overrightarrow{j}$) = $8 - 8 = 0$ \checkmark

