12.3 This problem is problem 3, from Exam 1, from Fall 2024. Express $\overrightarrow{v} = 2\overrightarrow{i} + 4\overrightarrow{j}$ as the sum of a vector parallel to $\overrightarrow{b} = \overrightarrow{i} + \overrightarrow{j}$ and a vector perpendicular to \overrightarrow{b} . Check your answer. Make sure it is correct.

Answer: There is a picture on the next page. The vector \overrightarrow{v} is equal to $\operatorname{proj}_{\overrightarrow{b}} \overrightarrow{v}$ plus $\overrightarrow{v} = \operatorname{proj}_{\overrightarrow{b}} \overrightarrow{v}$ with $\operatorname{proj}_{\overrightarrow{b}} \overrightarrow{v}$ parallel to \overrightarrow{b} and $\overrightarrow{v} = \operatorname{proj}_{\overrightarrow{b}} \overrightarrow{v}$ perpendicular to \overrightarrow{b} for

$$\operatorname{proj}_{\overrightarrow{b}} \overrightarrow{v} = \frac{\overrightarrow{v} \cdot \overrightarrow{b}}{\overrightarrow{b} \cdot \overrightarrow{b}} \overrightarrow{b}.$$

We calculate

$$\operatorname{proj}_{\overrightarrow{\boldsymbol{b}}} \overrightarrow{\boldsymbol{v}} = \frac{\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{b}}}{\overrightarrow{\boldsymbol{b}} \cdot \overrightarrow{\boldsymbol{b}}} \overrightarrow{\boldsymbol{b}} = \frac{2+4}{1+1} \overrightarrow{\boldsymbol{b}} = 3 \overrightarrow{\boldsymbol{b}} = 3 \overrightarrow{\boldsymbol{i}} + 3 \overrightarrow{\boldsymbol{j}}.$$

We calculate

$$\overrightarrow{\boldsymbol{v}} - \operatorname{proj}_{\overrightarrow{\boldsymbol{h}}} \overrightarrow{\boldsymbol{v}} = 2\overrightarrow{\boldsymbol{i}} + 4\overrightarrow{\boldsymbol{j}} - (3\overrightarrow{\boldsymbol{i}} + 3\overrightarrow{\boldsymbol{j}}) = -\overrightarrow{\boldsymbol{i}} + \overrightarrow{\boldsymbol{j}}.$$

We conclude that

$$\overrightarrow{v} = (3\overrightarrow{i} + 3\overrightarrow{j}) + (-\overrightarrow{i} + \overrightarrow{j}), \text{ with } 3\overrightarrow{i} + 3\overrightarrow{j} \text{ parallel to } \overrightarrow{b}$$

and $-\overrightarrow{i} + \overrightarrow{j}$ perpendicular to \overrightarrow{b} .

Of course it is true that $(3\overrightarrow{i} + 3\overrightarrow{j}) + (-\overrightarrow{i} + \overrightarrow{j})$ is equal to $2\overrightarrow{i} + 4\overrightarrow{j}$, which is \overrightarrow{v} .

It is also true that $3\overrightarrow{i} + 3\overrightarrow{j}$ is parallel to $\overrightarrow{b} = \overrightarrow{i} + \overrightarrow{j}$. We verify that $-\overrightarrow{i} + \overrightarrow{j}$ is perpendicular to $\overrightarrow{b} :$

$$(-\overrightarrow{\boldsymbol{i}}+\overrightarrow{\boldsymbol{j}})\cdot(\overrightarrow{\boldsymbol{i}}+\overrightarrow{\boldsymbol{j}})=-1+1=0\checkmark.$$

