\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 8, Monday, April 5, 2021

Find the absolute maximum and the absolute minimum values of

$$
f(x, y)=3 x y-6 x-3 y+7
$$

on the triangular region with vertices $(0,0),(3,0)$, and $(0,5)$.
Answer: We compute $\frac{\partial f}{\partial x}=3 y-6$ and $\frac{\partial f}{\partial y}=3 x-3$. Both partial derivatives are zero at the point $(x, y)=(1,2)$. This interior critical point might be an absolute extreme point.

We look at the restriction of f to the line $y=0$ with $0 \leq x \leq 3$.

$$
\left.f\right|_{y=0}(x)=-6 x+7
$$

and the derivative is -6 which is never zero. So the absolute extreme points of the restriction of f to the line $y=0$ with $0 \leq x \leq 3$ occur at the end points.

We look at the restriction of f to the line $x=0$ with $0 \leq y \leq 5$.

$$
\left.f\right|_{x=0}(y)=-3 y+7
$$

and the derivative is -3 which is never zero. So the absolute extreme points of the restriction of f to the line $x=0$ with $0 \leq y \leq 5$ occur at the end points.

The line which connects $(3,0)$ to $(0,5)$ is $y=-\frac{5}{3} x+5$. We look at the restriction of f to the line $y=-\frac{5}{3} x+5$ with $0 \leq x \leq 3$.

$$
\left.f\right|_{\text {top boundary }}(x)=3 x\left(-\frac{5}{3} x+5\right)-6 x-3\left(-\frac{5}{3} x+5\right)+7=-5 x^{2}+15 x-6 x+5 x-15+7
$$

The derivative is $-10 x+15-6+5$. The derivative is zero when $-10 x+14=0$; that is when $x=7 / 5$ and $y=8 / 3$.

The extreme points of f on our domain occur at $(0,0),(3,0),(0,5)$, or $(7 / 5,8 / 3)$. We plug these points into f :

$$
\begin{aligned}
f(0,0) & =7, & & \text { absolute maximum } \\
f(3,0) & =-18+7=-11 & & \text { absolute minimum } \\
f(0,5) & =-15+7=-8 & & \\
f(7 / 5,8 / 3) & =56 / 5-42 / 5-8+7=9 / 5 & & \\
f(1,2) & =6-6-6+7=1 & &
\end{aligned}
$$

The absolute minimum of f on our domain occurs at $(3,0,-11)$. The absolute maximum of f on our domain occurs at $(0,0,7)$.

