\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
The quiz is worth 5 points. The solutions will be posted on my website later today.
Quiz 8, February 17, 2020
What kind of geometric object is the intersection of the set of all points in 3-space which satisfy $x+y+3 z=6$ and the set of all points in 3 -space which satisfy $2 x+y+z=3$? Parameterize this object.
The geometric object is a line. We find two points on the line. When $x=0$, we solve $y+$ $3 z=6$ and $y+z=3$. Equation 1 minus equation two gives $2 z=3$; hence $z=\frac{3}{2}$. It follows that $y=3-\frac{3}{2}=\frac{3}{2}$. Observe that $\left(0, \frac{3}{2}, \frac{3}{2}\right)$ does satisfy both equations.

When $z=0$, we solve $x+y=6$ and $2 x+y=3$. Equation 1 minus equation 2 is $-x=3$ or $x=-3$. We compute that $y=6-x=6+3=9$. Observe that $(-3,9,0)$ does satisfy both equations. The vector from $\left(0, \frac{3}{2}, \frac{3}{2}\right)$ to $(-3,9,0)$ is $\overrightarrow{\boldsymbol{v}}=-3 \overrightarrow{\boldsymbol{i}}+\frac{15}{2} \overrightarrow{\boldsymbol{j}}-\frac{3}{2} \overrightarrow{\boldsymbol{k}}$. The line through $(-3,9,0)$ and parallel to \vec{v} is

$$
\left\{\begin{array}{l}
x=-3-3 t \\
y=9+\frac{15}{2} t \\
z=0-\frac{3}{2} t
\end{array}\right.
$$

Check. Observe that our proposed answer is always on the first plane:

$$
(-3-3 t)+9+\frac{15}{2} t-3\left(\frac{3}{2} t\right)=6, \checkmark
$$

and our proposed line is always on the second plane

$$
2(-3-3 t)+9+\frac{15}{2} t-\frac{3}{2} t=3 \checkmark
$$

