\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 7, Monday, March 29, 2021

Find all local minima, local maxima and saddle points for the function $f(x, y)=x^{2}+4 y^{2}-$ $6 x+8 y-15$.
Answer: We compute $\frac{\partial f}{\partial x}=2 x-6$ and $\frac{\partial f}{\partial y}=8 y+8$. Both partial derivatives are zero at the point $(x, y)=(3,-1)$. We apply the second derivative test at that point. We compute $\frac{\partial^{2} f}{\partial x^{2}}=2$, $\frac{\partial^{2} f}{\partial y \partial x}=0$, and $\frac{\partial^{2} f}{\partial y^{2}}=8$.

Observe that

$$
\left.\left(\frac{\partial^{2} f}{\partial x^{2}} \frac{\partial^{2} f}{\partial y^{2}}-\left(\frac{\partial^{2} f}{\partial y \partial x}\right)^{2}\right)\right|_{(x, y)=(3,-1)}=16
$$

which is positive. Thus, $(3,-1, f(3,1))$ is not a saddle point; it is either a local maximum or a local minimum. Also

$$
\left.\frac{\partial^{2} f}{\partial x^{2}}\right|_{(x, y)=(3,-1)}=2
$$

which is positive. We conclude that

$$
(3,-1, f(3,1)) \text { is a local minimum. }
$$

