\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 6, March 28, 2022

Find the absolute extreme points of the function $f(x, y)=x+y-x y$, which is defined on the closed triangle with vertices at $(0,0),(0,2)$, and $(4,0)$.

We put a picture of the domain on the last page. We see that the boundary has three pieces. Eventually, we will look at f restricted to each of these three pieces. Eventually, also, we will look at f evaluated at each of the end points of the boundary.

First we look for interior points where both partial derivatives vanish. We compute $f_{x}=$ $1-y$ and $f_{y}=1-x$. If $f_{x}=0$ and $f_{y}=0$ then $x=1$ and $y=1$. We will study $(1,1)$ in our final step.
Now we look at f restricted to the vertical line $x=0$, with $0 \leq y \leq 2$. This function is

$$
\left.f\right|_{x=0}=y .
$$

We see that $\frac{d}{d y}\left(\left.f\right|_{x=0}\right)=1$, which is never zero. Thus, the extreme points of $\left.f\right|_{x=0}$ occur at the end points $(0,0)$ and $(0,2)$. We already know to study these points in our final step.

Now we look at f restricted to the horizontal line $y=0$, with $0 \leq x \leq 4$. This function is

$$
\left.f\right|_{y=0}=x .
$$

We see that $\frac{d}{d x}\left(\left.f\right|_{y=0}\right)=1$, which is never zero. Thus, the extreme points of $\left.f\right|_{y=0}$ occur at the end points $(0,0)$ and $(4,0)$. We already know to study these points in our final step.

Now we look at f restricted to the slanting line $y=-\frac{1}{2} x+2$, with $0 \leq x \leq 4$. This function is

$$
\left.f\right|_{y=-\frac{1}{2} x+2}=x+\left(-\frac{1}{2} x+2\right)-x\left(-\frac{1}{2} x+2\right)=\frac{x^{2}}{2}-\frac{3}{2} x+2 .
$$

We compute

$$
\frac{d}{d x}\left(\left.f\right|_{\text {slanting line }}\right)=x-\frac{3}{2}
$$

Thus, $\frac{d}{d x}\left(\left.f\right|_{\text {slanting line }}\right)=0$ when $x=\frac{3}{2}$ and $y=2-\frac{3}{4}=\frac{5}{4}$.
It is time for the final step. The extreme points of f on our domain occur at one of the points $(0,0),(0,2),(4,0),(1,1)$, or $\left(\frac{3}{2}, \frac{5}{4}\right)$. We evaluate f at these 5 points; the largest answer is the maximum. The smallest answer is the minimum.

$$
\begin{aligned}
& f(0,0)=0 \\
& f(0,2)=2 \\
& f(4,0)=4 \\
& f(1,1)=1 \\
& f\left(\frac{3}{2}, \frac{5}{4}\right)=\frac{7}{8}
\end{aligned}
$$

We conclude that $(4,0,4)$ is the maximum of f on our domain and $(0,0,0)$ is the minimum of f on our domain.

The triangle with Varticas $(0,0),(0,2)$ and $(4,0)$

