$\qquad$

## No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
The quiz is worth 5 points. The solutions will be posted on my website later today.

## Quiz 6, February 5, 2020

Find the point where the line

$$
\left\{\begin{array}{l}
x=1-t \\
y=3 t \\
z=1+t
\end{array}\right.
$$

meets the plane $2 x-y+3 z=6$.
ANSWER: Plug the parametric equations for the line into the equation for the plane to find out WHEN the line hits the plane:

$$
\begin{gathered}
2(1-t)-(3 t)+3(1+t)=6 \\
2-2 t-3 t+3+3 t=6 \\
-2 t=1 \\
t=-1 / 2
\end{gathered}
$$

Now find out WHERE the line is at time $t=-1 / 2$ :

$$
\left\{\begin{array}{l}
x=1-(-1 / 2)=3 / 2 \\
y=3(-1 / 2)=-3 / 2 \\
z=1+(-1 / 2)=1 / 2
\end{array}\right.
$$

The point of intersection is $(3 / 2,-3 / 2,1 / 2)$.
Check: The proposed answer is on the plane because when $(3 / 2,-3 / 2,1 / 2)$ is plugged into the equation of the plane, one gets

$$
2(3 / 2)-(-3 / 2)+3(1 / 2)=(1 / 2)(6+3+3)=6 . \checkmark
$$

The proposed answer is on the line because when $t=-1 / 2$, then the parametric equations give

$$
\left\{\begin{array}{l}
x=1-(-1 / 2)=3 / 2 \\
y=3(-1 / 2)=-3 / 2 \\
z=1+(-1 / 2)=1 / 2
\end{array}\right.
$$

and this is the point $(3 / 2,-1 / 2,1 / 2) \checkmark$

