\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 6, September 18, 2019

Find the equation of the plane which contains $P_{1}=(1,1,-1), P_{2}=(2,0,2)$, and $P_{3}=$ ($0,-2,1$).
ANSWER: The vector $\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}$ is perpendicular to the desired plane. We compute
$\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}=\left|\begin{array}{ccc}\overrightarrow{\boldsymbol{i}} & \overrightarrow{\boldsymbol{j}} & \overrightarrow{\boldsymbol{k}} \\ 1 & -1 & 3 \\ -1 & -3 & 2\end{array}\right|=\overrightarrow{\boldsymbol{i}}\left|\begin{array}{cc}-1 & 3 \\ -3 & 2\end{array}\right|-\overrightarrow{\boldsymbol{j}}\left|\begin{array}{cc}1 & 3 \\ -1 & 2\end{array}\right|+\overrightarrow{\boldsymbol{k}}\left|\begin{array}{cc}1 & -1 \\ -1 & -3\end{array}\right|=7 \overrightarrow{\boldsymbol{i}}-5 \overrightarrow{\boldsymbol{j}}-4 \overrightarrow{\boldsymbol{k}}$.
The plane through $(1,1,-1)$ perpendicular to $7 \overrightarrow{\boldsymbol{i}}-5 \overrightarrow{\boldsymbol{j}}-4 \overrightarrow{\boldsymbol{k}}$ is

$$
7(x-1)-5(y-1)-4(z+1)=0
$$

which is the same as

$$
7 x-5 y-4 z=6 \text {. }
$$

Check: The point $(1,1,-1)$ satisfies the proposed equation because $7-5+4=6$. The point $(2,0,2)$ satisfies the proposed equation because $14-8=6$. The point $(0,-2,1)$ satisfies the proposed equation because $10-4=6$.

