\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.

Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.
Quiz 5, March 22, 2023

Find the local maximum points, local minimum points, and saddle points of

$$
f(x, y)=x^{2} y+4 x y-2 y^{2} .
$$

Answer:

The derivatives are

$$
\begin{gathered}
f_{x}=2 x y+4 y, \quad f_{y}=x^{2}+4 x-4 y \\
f_{x x}=2 y, \quad f_{x y}=2 x+4, \quad \text { and } \quad f_{y y}=-4 .
\end{gathered}
$$

Observe that the equation $f_{x}=0$ can be factored to yield $2 y(x+2)=0$. There are two different ways this equation can be satisfied: either $y=0$ or $x=-2$.

When $y=0$, then $f_{y}=0$ becomes $x^{2}+4 x=0$; hence $x(x+4)=0$ and $x=0$ or $x=-4$. So far, we have identified two critical points; namely $(0,0)$ and $(-4,0)$.

When $x=-2$, then $f_{y}=0$ becomes $4-8-4 y=0$; hence, $-4=4 y$ and $y=-1$.
Thus f has exactly three critical points, namely $(0,0),(-4,0)$, and $(-2,-1)$.
We apply the second derivative test at each critical point.
At $(0,0)$, the Hessian $\left.H\right|_{(0,0)}$ is equal to

$$
\left.H\right|_{(0,0)}=\left.\left(f_{x x} f_{y y}-f_{x y}^{2}\right)\right|_{(0,0)}=\left.\left((2 y)(-4)-(2 x+4)^{2}\right)\right|_{(0,0)}=-16<0
$$

Thus,

$$
(0,0, f(0,0)) \text { is a saddle point. }
$$

At $(-4,0)$, the Hessian $\left.H\right|_{(-4,0)}$ is equal to

$$
\left.H\right|_{(-4,0)}=\left.\left(f_{x x} f_{y y}-f_{x y}^{2}\right)\right|_{(-4,0)}=\left.\left((2 y)(-4)-(2 x+4)^{2}\right)\right|_{(-4,0)}=-16<0
$$

Thus,

$$
(-4,0, f(-4,0)) \text { is a saddle point. }
$$

At $(-2,-1)$, the Hessian $\left.H\right|_{(-2,-1)}$ is equal to

$$
\left.H\right|_{(-2,-1)}=\left.\left(f_{x x} f_{y y}-f_{x y}^{2}\right)\right|_{(-2,-1)}=\left.\left((2 y)(-4)-(2 x+4)^{2}\right)\right|_{(-2,-1)}
$$

$$
=\left.\left((-2)(-4)-(2(-2)+4)^{2}\right)\right|_{(-4,0)}=8>0
$$

We see also that $f_{x x}(-2,-1)=\left.2 y\right|_{(-2,-1)}=-2<0$. We conclude that

$$
(-2,-1, f(-2,-1)) \text { is a local maximum. }
$$

