$\qquad$

## No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
The quiz is worth 5 points. The solutions will be posted on my website later today.
Quiz 5, September 16, 2019
Find parametric equations for the line which is the intersection of the planes $x+y+z=1$ and $x+y=2$.

ANSWER: Let $\ell$ be the line which is the intersection of the planes $x+y+z=1$ and $x+y=2$. We find two points on $\ell$

When $x=0$, we solve $y+z=1$ and $y=2$ simultaneously and get the point $P_{0}=(0,2,-1)$ which is on $\ell$.

When $y=0$, we solve $x+z=1$ and $x=2$ simultaneously and get the point $P_{1}=(2,0,-1)$ which is on $\ell$.

The line $\ell$ contains the point $P_{0}=(0,2,-1)$ and is parallel to the vector $\vec{v}=\overrightarrow{P_{0} P_{1}}=$ $2 \overrightarrow{\boldsymbol{i}}-2 \overrightarrow{\boldsymbol{j}}$. The line $\ell$ is

$$
x-0=2 t, \quad y-2=-2 t, \quad z+1=0 .
$$

In other words, $\ell$ is

$$
x=2 t, \quad y=2-2 t, \quad z=-1
$$

Check We verify that our answer satisfies the equation $x+y+z=1$ :

$$
2 t+(2-2 t)-1=1
$$

We verify that our answer satisfies the equation

$$
\begin{gathered}
x+y=2 \\
2 t+(2-2 t)=2
\end{gathered}
$$

