No calculators, cell phones, computers, notes, etc.
Circle your answer. Make your work correct, complete and coherent.
The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 5, October 24, 2017, 1:15 class

An object is fired from the origin in the $x y$-plane at an angle α from the positive x-axis with an initial speed of v_{0}. The acceleration of the object is $-g \overrightarrow{\boldsymbol{j}}$. How high is the object when its x-coordinate is R ?
Let $\overrightarrow{\boldsymbol{r}}(t)=x(t) \overrightarrow{\boldsymbol{i}}+y(t) \overrightarrow{\boldsymbol{j}}$ be the position vector of the object at time t. We are told that $\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)=-g \overrightarrow{\boldsymbol{j}}, \overrightarrow{\boldsymbol{r}}^{\prime}(0)=v_{0} \cos \alpha \overrightarrow{\boldsymbol{i}}+v_{0} \sin \alpha \overrightarrow{\boldsymbol{j}}$, and $\overrightarrow{\boldsymbol{r}}(0)=0 \overrightarrow{\boldsymbol{i}}+0 \overrightarrow{\boldsymbol{j}}$. We integrate to learn $\overrightarrow{\boldsymbol{r}}^{\prime}(t)=-g t \overrightarrow{\boldsymbol{j}}+\overrightarrow{c_{1}}$. Plug in $t=0$ to learn

$$
v_{0} \cos \alpha \overrightarrow{\boldsymbol{i}}+v_{0} \cos \alpha \overrightarrow{\boldsymbol{j}}=\overrightarrow{\boldsymbol{r}}^{\prime}(0)=\overrightarrow{c_{1}} .
$$

So,

$$
\overrightarrow{\boldsymbol{r}}^{\prime}(t)=v_{0} \cos \alpha \overrightarrow{\boldsymbol{i}}+\left(v_{0} \sin \alpha-g t\right) \overrightarrow{\boldsymbol{j}} .
$$

Integrate again to learn

$$
\vec{r}(t)=\left(v_{0} \cos \alpha\right) t \overrightarrow{\boldsymbol{i}}+\left(\left(v_{0} \sin \alpha\right) t-g t^{2} / 2\right) \vec{j}+\overrightarrow{c_{2}}
$$

Plug in $t=0$ to learn

$$
0=\vec{r}(0)=\overrightarrow{c_{2}}
$$

Thus,

$$
\overrightarrow{\boldsymbol{r}}(t)=\left(v_{0} \cos \alpha\right) t \overrightarrow{\boldsymbol{i}}+\left(\left(v_{0} \sin \alpha\right) t-g t^{2} / 2\right) \vec{j}
$$

The x-coordinate of the object is R when

$$
\left(v_{0} \cos \alpha\right) t=R,
$$

so $t=R /\left(v_{0} \cos \alpha\right)$. When the x-coordinate is R, the y coordinate is

$$
\begin{gathered}
y\left(R /\left(v_{0} \cos \alpha\right)\right)=\left(v_{0} \sin \alpha\right)\left(R /\left(v_{0} \cos \alpha\right)\right)-g\left(\frac{\left(R /\left(v_{0} \cos \alpha\right)\right)^{2}}{2}\right) \\
=R \tan \alpha-\frac{g R^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} .
\end{gathered}
$$

