\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.
Quiz 4, February 22, 2023

A marble is fired from the origin with initial speed v_{0} and launch angle α. The position vector of the marble at time t is $\overrightarrow{\boldsymbol{r}}(t)$. Assume that $\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)=-g \overrightarrow{\boldsymbol{j}}$ for some constant g.
(a) What is $\overrightarrow{\boldsymbol{r}}(t)$?
(b) When is the x-coordinate of the marble equal to R ?
(c) What is the height of the marble at your answer to (b)?

Answer:

(a) Integrate to learn $\overrightarrow{\boldsymbol{r}}^{\prime}(t)=-g t \overrightarrow{\boldsymbol{j}}+\overrightarrow{\boldsymbol{c}}_{1}$ for some constant vector $\overrightarrow{\boldsymbol{c}}_{1}$. Plug in $t=0$ to obtain

$$
v_{0} \cos \alpha \overrightarrow{\boldsymbol{i}}+v_{0} \sin \alpha \overrightarrow{\boldsymbol{j}}=\overrightarrow{\boldsymbol{r}}^{\prime}(0)=-g(0) \overrightarrow{\boldsymbol{j}}+\overrightarrow{\boldsymbol{c}}_{1}=\overrightarrow{\boldsymbol{c}}_{1}
$$

Thus,

$$
\overrightarrow{\boldsymbol{r}}^{\prime}(t)=v_{0} \cos \alpha \overrightarrow{\boldsymbol{i}}+\left(v_{0} \sin \alpha-g t \overrightarrow{\boldsymbol{j}}\right.
$$

Integrate again to obtain

$$
\overrightarrow{\boldsymbol{r}}(t)=\left(v_{0} \cos \alpha\right) t \overrightarrow{\boldsymbol{i}}+\left(v_{0} \sin \alpha\right) t-\frac{g t^{2}}{2} \overrightarrow{\boldsymbol{j}}+\overrightarrow{\boldsymbol{c}}_{2}
$$

for some constant vector $\overrightarrow{\boldsymbol{c}}_{2}$. Plug in $t=0$ to obtain

$$
-\overrightarrow{\boldsymbol{i}}+0 \overrightarrow{\boldsymbol{j}}=\overrightarrow{\boldsymbol{r}}(0)=\left(v_{0} \cos \alpha\right) 0 \overrightarrow{\boldsymbol{i}}+\left(v_{0} \sin \alpha\right) 0-\frac{g 0}{2} \overrightarrow{\boldsymbol{j}}+\overrightarrow{\boldsymbol{c}}_{2}
$$

Thus $\overrightarrow{\boldsymbol{c}}_{2}=0$ and

$$
\overrightarrow{\boldsymbol{r}}(t)=\left(v_{0} \cos \alpha\right) t \overrightarrow{\boldsymbol{i}}+\left(v_{0} \sin \alpha t-\frac{g t^{2}}{2} \overrightarrow{\boldsymbol{j}}\right)
$$

(b) Observe that the x-coordinate of the position vector is equal to R when $R=\left(v_{0} \cos \alpha\right) t$ or

$$
\frac{R}{v_{0} \cos \alpha}=t
$$

(c) When $t=\frac{R}{v_{0} \cos \alpha}$, the height of the marble is

$$
\begin{gathered}
v_{0} \sin \alpha \frac{R}{v_{0} \cos \alpha}-\frac{g\left(\frac{R}{v_{0} \cos \alpha}\right)^{2}}{2} \\
=R \tan \alpha-\frac{g R^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} .
\end{gathered}
$$

