\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.

Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 4, September 29, 2022

A projectile is fired at a speed of $840 \mathrm{~m} / \mathrm{sec}$ at an angle of 60 degrees above the ground. The only force acting on the projectile is gravity ($9.8 \mathrm{~m} / \mathrm{sec}^{2}$ toward the ground). How long will it take until the projectile is $21,000 \mathrm{~m}$ down range?

Answer: Let $\vec{r}(t)$ be the position vector of the projectile at time t. We call the point where the projectile is fired the origin. We are told that

$$
\begin{aligned}
\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t) & =-9.8 \\
\overrightarrow{\boldsymbol{r}}^{\prime}(0) & =840 \cos \frac{\pi}{6} \overrightarrow{\boldsymbol{i}}+840 \sin \frac{\pi}{6} \overrightarrow{\boldsymbol{j}} \\
& =840\left(\frac{1}{2}\right) \overrightarrow{\boldsymbol{i}}+840\left(\frac{\sqrt{3}}{2}\right) \overrightarrow{\boldsymbol{j}} \\
& =420 \overrightarrow{\boldsymbol{i}}+420 \sqrt{3} \overrightarrow{\boldsymbol{j}} \\
\overrightarrow{\boldsymbol{r}}(0) & =0 \overrightarrow{\boldsymbol{i}}+0 \overrightarrow{\boldsymbol{j}}
\end{aligned}
$$

We integrate $\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)$ to see that

$$
\overrightarrow{\boldsymbol{r}}^{\prime}(t)=-9.8 t \overrightarrow{\boldsymbol{j}}+\vec{c}_{1}
$$

for some constant vector \vec{c}_{1}. Plug in $t=0$ to learn

$$
420 \overrightarrow{\boldsymbol{i}}+420 \sqrt{3} \vec{j}=\overrightarrow{\boldsymbol{r}}^{\prime}(0)=-9.8(0)+\vec{c}_{1}
$$

Thus $420 \vec{i}+420 \sqrt{3} \vec{j}=\vec{c}_{1}$ and

$$
\overrightarrow{\boldsymbol{r}}^{\prime}(t)=420 \overrightarrow{\boldsymbol{i}}+(420 \sqrt{3}-9.8 t) \overrightarrow{\boldsymbol{j}}
$$

Integrate again to learn

$$
\vec{r}(t)=420 t \overrightarrow{\boldsymbol{i}}+\left(420 \sqrt{3} t-4.9 t^{2}\right) \vec{j}+\vec{c}_{2}
$$

for some constant vector \vec{c}_{2}. Plug in $t=0$ to learn

$$
0 \overrightarrow{\boldsymbol{i}}+0 \overrightarrow{\boldsymbol{j}}=\overrightarrow{\boldsymbol{r}}(0)=\vec{c}_{2} .
$$

Thus, $\vec{c}_{2}=0$ and

$$
\vec{r}(t)=420 t \overrightarrow{\boldsymbol{i}}+\left(420 \sqrt{3} t-4.9 t^{2}\right) \overrightarrow{\boldsymbol{j}}
$$

The projectile is $21,000 \mathrm{~m}$ down range when the $\overrightarrow{\boldsymbol{i}}$ component of $\overrightarrow{\boldsymbol{r}}(t)$ is equal to 21,000 . That is, when

$$
420 t=21,000
$$

or

$$
t=\frac{21000}{420}=\frac{21 \cdot 100}{21 \cdot 2}=\frac{100}{2}=50 .
$$

It takes 50 seconds for the projectile to get $21,000 \mathrm{~m}$ down range.

