No calculators, cell phones, computers, notes, etc.
Circle your answer. Make your work correct, complete and coherent.
The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 4, October 3, 2017, 1:15 class

Let $f(x, y)=-\frac{x}{\sqrt{x^{2}+y^{2}}}$.
(a) Find the limit of $f(x, y)$ as (x, y) goes to $(0,0)$ along the y-axis with y-positive.
(b) Find the limit of $f(x, y)$ as (x, y) goes to $(0,0)$ along the $y=x$ with y-positive.
(c) Find the limit of $f(x, y)$ as (x, y) goes to $(0,0)$ along the x-axis with x-positive.
(d) Find the limit of $f(x, y)$ as (x, y) goes to $(0,0)$.

ANSWER:
(a)

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ \text { alon posis }}}-\frac{x}{\sqrt{x^{2}+y^{2}}}=\lim _{y \rightarrow 0^{+}}-\frac{0}{\sqrt{y^{2}}}=\lim _{y \rightarrow 0^{+}}-0=0
$$

(b) $\lim _{\substack{(x, y \rightarrow 0.0) \\ \text { along } y=x \text { with ypositive }}}-\frac{x}{\sqrt{x^{2}+y^{2}}}=\lim _{y \rightarrow 0^{+}}-\frac{y}{\sqrt{y^{2}+y^{2}}}=\lim _{y \rightarrow 0^{+}}-\frac{y}{\sqrt{2 y}}=\lim _{y \rightarrow 0^{+}}-\frac{1}{\sqrt{2}}=-\frac{1}{\sqrt{2}}$
(c) $\lim _{\substack{\text { (xi) } \rightarrow \text { (0.0) } \\ \text { along } \\ \text { ance positive } x \text { axis }}}-\frac{x}{\sqrt{x^{2}+y^{2}}}=\lim _{x \rightarrow 0^{+}}-\frac{x}{\sqrt{x^{2}}}=\lim _{x \rightarrow 0^{+}}-1=-1$
(d) $\lim _{(x, y) \rightarrow(0,0)}-\frac{x}{\sqrt{x^{2}+y^{2}}}$ does not exist.

