\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
The quiz is worth 5 points. The solutions will be posted on my website later today.
Quiz 3, February 19, 2019
At time $t=0$, a particle is located at the point $(1,2,3)$. It travels in a straight line to the point $(4,1,4)$, has speed 2 at $(1,2,3)$, and has constant acceleration $3 \overrightarrow{\boldsymbol{i}}-\overrightarrow{\boldsymbol{j}}+\overrightarrow{\boldsymbol{k}}$. Find an equation for the position vector $\vec{r}(t)$ of the particle at time t.

ANSWER: We are told that

$$
\begin{aligned}
\vec{r}^{\prime \prime}(t) & =3 \overrightarrow{\boldsymbol{i}}-\overrightarrow{\boldsymbol{j}}+\overrightarrow{\boldsymbol{k}} \\
\vec{r}(0) & =\overrightarrow{\boldsymbol{i}}+2 \overrightarrow{\boldsymbol{j}}+3 \overrightarrow{\boldsymbol{k}} \\
\vec{r}^{\prime}(0) & =\frac{2}{\sqrt{11}}(3 \overrightarrow{\boldsymbol{i}}-\overrightarrow{\boldsymbol{j}}+\overrightarrow{\boldsymbol{k}})
\end{aligned}
$$

Integrate to learn that

$$
\overrightarrow{\boldsymbol{r}}^{\prime}(t)=3 t \overrightarrow{\boldsymbol{i}}-t \overrightarrow{\boldsymbol{j}}+t \overrightarrow{\boldsymbol{k}}+\overrightarrow{\boldsymbol{c}}_{1}
$$

Plug in $t=0$:

$$
\frac{2}{\sqrt{11}}(3 \vec{i}-\vec{j}+\vec{k})=\vec{r}^{\prime}(0)=\vec{c}_{1} .
$$

Thus,

$$
\overrightarrow{\boldsymbol{r}}^{\prime}(t)=\left(3 t+\frac{6}{\sqrt{11}}\right) \overrightarrow{\boldsymbol{i}}+\left(-t-\frac{2}{\sqrt{11}}\right) \overrightarrow{\boldsymbol{j}}+\left(t+\frac{2}{\sqrt{11}}\right) \overrightarrow{\boldsymbol{k}} .
$$

Integrate again:

$$
\overrightarrow{\boldsymbol{r}}(t)=\left(3 \frac{t^{2}}{2}+\frac{6}{\sqrt{11}} t\right) \overrightarrow{\boldsymbol{i}}+\left(-\frac{t^{2}}{2}-\frac{2}{\sqrt{11}} t\right) \overrightarrow{\boldsymbol{j}}+\left(\frac{t^{2}}{2}+\frac{2}{\sqrt{11}} t\right) \overrightarrow{\boldsymbol{k}}+\overrightarrow{\boldsymbol{c}}_{2} .
$$

Plug in $t=0$:

$$
\overrightarrow{\boldsymbol{i}}+2 \overrightarrow{\boldsymbol{j}}+3 \overrightarrow{\boldsymbol{k}}=\overrightarrow{\boldsymbol{r}}(0)=\overrightarrow{\boldsymbol{c}}_{2} .
$$

Thus,

$$
\overrightarrow{\boldsymbol{r}}=\left(3 \frac{t^{2}}{2}+\frac{6}{\sqrt{11}} t+1\right) \overrightarrow{\boldsymbol{i}}+\left(-\frac{t^{2}}{2}-\frac{2}{\sqrt{11}} t+2\right) \overrightarrow{\boldsymbol{j}}+\left(\frac{t^{2}}{2}+\frac{2}{\sqrt{11}} t+3\right) \overrightarrow{\boldsymbol{k}}
$$

