\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
The quiz is worth 5 points. The solutions will be posted on my website later today.
Quiz 3, October 2, 2018
An object is moving in three-space. The position vector of the object at time t is

$$
\overrightarrow{\boldsymbol{r}}(t)=\sin (t) \overrightarrow{\boldsymbol{i}}+\left(t^{2}-\cos (t)\right) \overrightarrow{\boldsymbol{j}}+e^{t} \overrightarrow{\boldsymbol{k}}
$$

Find parametric equations for the line tangent to the path of the object at time $t=0$.
ANSWER: The position vector of the object at time zero is

$$
\vec{r}(0)=-\overrightarrow{\boldsymbol{j}}+\overrightarrow{\boldsymbol{k}}
$$

hence, at $t=0$, the object is sitting on the point $(0,-1,1)$. The velocity vector at time t is $\overrightarrow{\boldsymbol{r}}^{\prime}(t)=\cos (t) \overrightarrow{\boldsymbol{i}}+(2 t+\sin t) \overrightarrow{\boldsymbol{j}}+e^{t} \overrightarrow{\boldsymbol{k}}$. So the vector

$$
\vec{r}^{\prime}(0)=\overrightarrow{\boldsymbol{i}}+\overrightarrow{\boldsymbol{k}}
$$

is tangent to the curve at $t=0$. The answer is the line which passes through $(0,-1,1)$ and is parallel to $\vec{i}+\vec{k}$:

$$
\left\{\begin{array}{l}
x=0+t \\
y=-1+0 t \\
z=1+t
\end{array}\right.
$$

