\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.
Quiz 2, September 1, 2022
Find the equation of the plane in 3 -space which contains the points $(1,1,-1),(2,0,2)$, and $(0,-2,1)$. Please make sure that all three points satisfy your equation.
Answer: Let $P=(1,1,-1), Q=(2,0,2)$, and $R=(0,-2,1)$. Observe that

$$
\overrightarrow{P Q}=\overrightarrow{\boldsymbol{i}}-\vec{j}+3 \overrightarrow{\boldsymbol{k}} \quad \text { and } \quad \overrightarrow{P R}=-\overrightarrow{\boldsymbol{i}}-3 \vec{j}+2 \overrightarrow{\boldsymbol{k}}
$$

We compute

$$
\begin{aligned}
\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\overrightarrow{\boldsymbol{i}} & \vec{j} & \overrightarrow{\boldsymbol{k}} \\
1 & -1 & 3 \\
-1 & -3 & 2
\end{array}\right| & =\left|\begin{array}{cc}
-1 & 3 \\
-3 & 2
\end{array}\right| \overrightarrow{\boldsymbol{i}}-\left|\begin{array}{cc}
1 & 3 \\
-1 & 2
\end{array}\right| \overrightarrow{\boldsymbol{j}}+\left|\begin{array}{cc}
1 & -1 \\
-1 & -3
\end{array}\right| \overrightarrow{\boldsymbol{k}} \\
& =7 \overrightarrow{\boldsymbol{i}}-5 \overrightarrow{\boldsymbol{j}}-4 \overrightarrow{\boldsymbol{k}}
\end{aligned}
$$

The plane through $(1,1,-1)$ perpendicular to $7 \overrightarrow{\boldsymbol{i}}-5 \overrightarrow{\boldsymbol{j}}-4 \overrightarrow{\boldsymbol{k}}$ is

$$
\begin{gathered}
7(x-1)-5(y-1)-4(z+1)=0 \\
7 x-5 y-4 z=6
\end{gathered}
$$

Check The point $P=(1,1,-1)$ satisfies the proposed answer because $7-5+4=6$.
The point $Q=(2,0,2)$ satisfies the proposed answer because $14-8=6$.
The point $R=(0,-2,1)$ satisfies the proposed answer because $10-4=6$.

