\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 19, November 13, 2019

Find the absolute maxima and absolute minima of the function

$$
f(x, y)=2 x^{2}-4 x+y^{2}-4 y+1
$$

on the closed triangle bounded by the lines $x=0, y=2$, and $y=2 x$ in the first quadrant.
ANSWER: A picture of the domain of f may be found a different page. The extreme points of f occur either at an interior point where both partial derivatives vanish or at a point on the boundary. There are three pieces of the boundary; we must consider f restricted to each of these pieces. The boundary has three end points. We must consider each of these.

We compute $f_{x}=4 x-4$ and $f_{y}=2 y-4$. Observe that both partial derivatives vanish at the point $(1,2)$. This point is on the boundary of our region.

The end points of the boundary are $(0,0),(0,2),(1,2)$.
When f is restricted to $x=0$, the resulting function is $f(y)=y^{2}-4 y+1$. Observe that $f^{\prime}(y)=2 y-4$. This function is zero when $y=2$. We need to consider $(0,2)$ (which is already on our list).

When f is restricted to $y=2$, the resulting function is $f(x)=2 x^{2}-4 x+2^{2}-4(2)+1$. The derivative is $f^{\prime}(x)=4 x-4$. The derivative is zero, when $x=1$. The resulting point is $(1,2)$, which is already on our list.

When f is restricted to $y=2 x$, the resulting function is $f(x)=2 x^{2}-4 x+(2 x)^{2}-4(2 x)+1$. The derivative is $f^{\prime}(x)=4 x-4+8 x-8$. In other words, $f^{\prime}(x)=12 x-12$. Observe that $f^{\prime}(x)=0$ when $x=1$. The resulting point is $(1,2)$, which is already on our list.

The absolute extreme points of $f(x, y)$ on our domain occur at

$$
(0,0), \quad(0,2), \quad \text { or } \quad(1,2) .
$$

Plug these points into f :

$$
\begin{aligned}
& f(0,0)=1 \\
& f(0,2)=4-8+1=-3 \\
& f(1,2)=2-4+4-8+1=-5
\end{aligned}
$$

The absolute maximum of f on our domain occurs at $(0,0,1)$. The absolute minimum of f on our domain occurs at $(1,2,-5)$.

