\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.

The quiz is worth 5 points. The solutions will be posted on my website later today.
Quiz 18, November 11, 2019
Find all the local maxima, local minima, and saddle points of $f(x, y)=x^{3}-y^{3}-2 x y+6$.
ANSWER: We first compute

$$
f_{x}=3 x^{2}-2 y \quad \text { and } \quad f_{y}=-3 y^{2}-2 x
$$

We look for all points P with $f_{x}(P)=0$ and $f_{y}(P)=0$. So we solve

$$
\left\{\begin{array}{l}
3 x^{2}-2 y=0 \\
-3 y^{2}-2 x=0
\end{array}\right.
$$

simultaneously:

$$
\begin{gathered}
\left\{\begin{array}{l}
(3 / 2) x^{2}=y \\
-3 y^{2}-2 x=0
\end{array}\right. \\
\left\{\begin{array}{l}
(3 / 2) x^{2}=y \\
-3\left((3 / 2) x^{2}\right)^{2}-2 x=0
\end{array}\right. \\
\left\{\begin{array}{l}
(3 / 2) x^{2}=y \\
-(27 / 4) x^{4}-2 x=0
\end{array}\right. \\
\left\{\begin{array}{l}
(3 / 2) x^{2}=y \\
-x\left(27 x^{3}+8\right)=0
\end{array}\right.
\end{gathered}
$$

So either $x=-2 / 3$ and $y=(3 / 2)(2 / 3)^{2}=2 / 3$ or $x=0$ and $y=0$. The two points where both partial derivatives vanish are $P_{1}=(-2 / 3,2 / 3)$ and $P_{2}=(0,0)$. We apply the second derivative test at these points. We compute

$$
f_{x x}=6 x, \quad f_{x y}=-2 \quad f_{y y}=-6 y .
$$

We see that

$$
f_{x x}\left(P_{1}\right) f_{y y}\left(P_{1}\right)-\left[f_{x y}\left(P_{1}\right)\right]^{2}=6(-2 / 3)(-6)(2 / 3)-(-2)^{2}=16-4=12
$$

and $f_{x x}\left(P_{1}\right)=6(-2 / 3)=-4$. Thus $0<f_{x x}\left(P_{1}\right) f_{y y}\left(P_{1}\right)-\left[f_{x y}\left(P_{1}\right)\right]^{2}$ and $f_{x x}\left(P_{1}\right)<0$. We conclude that

$$
(-2 / 3,2 / 3, f(-2 / 3,2 / 3)) \text { is a local maximum of } f \text {. }
$$

We also see that

$$
f_{x x}\left(P_{2}\right) f_{y y}\left(P_{2}\right)-\left[f_{x y}\left(P_{2}\right)\right]^{2}=0-(-2)^{2}=-4<0
$$

We conclude that

$$
(0,0,0) \text { is a saddle point of } f \text {. }
$$

