\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 13, Wednesday, November 9, 2020

Find all local maxima, local minima, and saddle points of

$$
f(x, y)=2 x^{2}+3 x y+4 y^{2}-5 x+2 y
$$

Answer: We compute

$$
f_{x}=4 x+3 y-5 \quad \text { and } \quad f_{y}=3 x+8 y+2
$$

We solve

$$
\left\{\begin{array}{l}
4 x+3 y-5=0 \\
3 x+8 y+2=0
\end{array}\right.
$$

simultaneously. The solution set is unchanged if we replace Equation 2 with Equation 2 minus $3 / 4$ Equation 1. We solve

$$
\left\{\begin{array}{l}
4 x+3 y-5=0 \\
\frac{23}{4} y+\frac{23}{4}=0
\end{array}\right.
$$

simultaneously.
The solution set is unchanged if we replace Equation 2 with $\frac{4}{23}$ Equation 2. We solve

$$
\left\{\begin{array}{r}
4 x+3 y-5=0 \\
y+1=0
\end{array}\right.
$$

simultaneously. So, $y=-1$ and $x=2$. We apply the second derivative test at this point.
Calculate $f_{x x}=4, f_{x y}=3$, and $f_{y y}=8$. Thus, $H=f_{x x} f_{y y}-f_{x y}^{2}=4(8)-3^{2}$, which is positive. Observe $f_{x x}=4$, which is also positive. We conclude that

$$
(2,-1, f(2,-1)) \text { is a local minimum. }
$$

