\qquad
No calculators, cell phones, computers, notes, etc.
Circle your answer. Make your work correct, complete and coherent.
The quiz is worth 5 points. The solutions will be posted on my website later today.
Quiz 12, October 14, 2019
Suppose $\frac{d \vec{r}}{d t}=-t \overrightarrow{\boldsymbol{i}}-t \overrightarrow{\boldsymbol{j}}-t \overrightarrow{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{r}}(0)=\overrightarrow{\boldsymbol{i}}+2 \overrightarrow{\boldsymbol{j}}+3 \overrightarrow{\boldsymbol{k}}$. Find $\overrightarrow{\boldsymbol{r}}(t)$.
ANSWER: Integrate to learn that

$$
\overrightarrow{\boldsymbol{r}}(t)=-\frac{t^{2}}{2} \overrightarrow{\boldsymbol{i}}-\frac{t^{2}}{2} \overrightarrow{\boldsymbol{j}}-\frac{t^{2}}{2} \overrightarrow{\boldsymbol{k}}+\overrightarrow{\boldsymbol{c}}
$$

for some constant vector $\overrightarrow{\boldsymbol{c}}$. Plug in $t=0$ to learn that

$$
\overrightarrow{\boldsymbol{i}}+2 \overrightarrow{\boldsymbol{j}}+3 \overrightarrow{\boldsymbol{k}}=\overrightarrow{\boldsymbol{r}}(0)=-\frac{0^{2}}{2} \overrightarrow{\boldsymbol{i}}-\frac{0^{2}}{2} \overrightarrow{\boldsymbol{j}}-\frac{0^{2}}{2} \overrightarrow{\boldsymbol{k}}+\overrightarrow{\boldsymbol{c}}=\overrightarrow{\boldsymbol{c}} .
$$

Thus, $\vec{c}=\vec{i}+2 \vec{j}+3 \vec{k}$ and

$$
\vec{r}(t)=-\frac{t^{2}}{2} \overrightarrow{\boldsymbol{i}}-\frac{t^{2}}{2} \overrightarrow{\boldsymbol{j}}-\frac{t^{2}}{2} \overrightarrow{\boldsymbol{k}}+\overrightarrow{\boldsymbol{i}}+2 \overrightarrow{\boldsymbol{j}}+3 \overrightarrow{\boldsymbol{k}}
$$

Our answer is

$$
\overrightarrow{\boldsymbol{r}}(t)=)=\left(-\frac{t^{2}}{2}+1\right) \overrightarrow{\boldsymbol{i}}+\left(-\frac{t^{2}}{2}+2\right) \overrightarrow{\boldsymbol{j}}+\left(-\frac{t^{2}}{2}+3\right) \overrightarrow{\boldsymbol{k}} .
$$

