

21. Does there exist a function $f(x, y)$ such that $\vec{\nabla} f = (6xy + 4)\vec{i} + (3x^2 - 4y)\vec{j}$?
 If the answer is yes, then find this function $f(x, y)$.

$M_y = 6y$ $N_x = 6x$ $M_y = N_x$ so f exists.

$$f_x = 6xy + 4$$

$$f = 3x^2y + 4x + C(y)$$

$$f_y = 3x^2 + C'(y)$$

$$f_y = 3x^2 - 4y$$

$$\text{so } C'(y) = -4y$$

$$C(y) = -2y^2$$

$$f = 3x^2y + 4x - 2y^2$$

22. Let C be the curve which starts at $(1, 0)$; travels along the x -axis until $(2, 0)$; travels around the upper part of the circle $x^2 + y^2 = 4$ to $(-2, 0)$; travels along the x -axis to $(-1, 0)$; and finally travels along the upper part of the circle $x^2 + y^2 = 1$ back to $(1, 0)$. Compute $\int_C \underbrace{(2x^2 + 6y)}_{M} dx + \underbrace{(3x + 4y^2)}_{N} dy$.

$$\int_C M dx + N dy = \iint_{\text{Region}} N_x - M_y \, dx \, dy = \iint_{\text{Region}} 3 - 6 \, dx \, dy = (-3) \text{ Area of region}$$

$$= (-3) \left(\frac{1}{2} (\pi 4 - \pi) \right) = \boxed{-\frac{9\pi}{2}}$$