

Math 241, Final Exam, Fall, 2024 Solutions

YOU SHOULD KEEP THIS PIECE OF PAPER. Write everything on the **blank paper provided**. Return the problems **IN ORDER** (use as much paper as necessary), use **ONLY ONE SIDE** of each piece of paper. Number your pages and write your name on each page. Take a picture of your exam (for your records) just before you turn the exam in. I will e-mail your grade and my comments to you. **Fold your exam in half** before you turn it in.

The exam is worth 100 points. There are 10 problems; each problem is worth 10 points. **Make your work coherent, complete, and correct.** Please **CIRCLE** your answer. Please **CHECK** your answer whenever possible.

The solutions will be posted later today.

No Calculators, Cell phones, computers, notes, etc.

(1) **Find the equation of the plane that contains the points $P = (1, 1, 1)$, $Q = (-3, 1, -1)$, and $R = (-2, 3, 1)$. Please make sure that your answer is correct.**

We compute

$$\begin{aligned}\overrightarrow{PQ} &= -4\overrightarrow{i} + 0\overrightarrow{j} - 2\overrightarrow{k} \\ \overrightarrow{PR} &= -3\overrightarrow{i} + 2\overrightarrow{j} + 0\overrightarrow{k}\end{aligned}$$

It follows that

$$\begin{aligned}\overrightarrow{PQ} \times \overrightarrow{PR} &= \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -4 & 0 & -2 \\ -3 & 2 & 0 \end{vmatrix} \\ &= \begin{vmatrix} 0 & -2 \\ 2 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -4 & -2 \\ -3 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} -4 & 0 \\ -3 & 2 \end{vmatrix} \overrightarrow{k} \\ &= 4\overrightarrow{i} + 6\overrightarrow{j} - 8\overrightarrow{k}\end{aligned}$$

The plane through $(1, 1, 1)$ perpendicular to $4\overrightarrow{i} + 6\overrightarrow{j} - 8\overrightarrow{k}$ is

$$4(x - 1) + 6(y - 1) - 8(z - 1) = 0$$

$$2(x - 1) + 3(y - 1) - 4(z - 1) = 0$$

$$2x + 3y - 4z = 1$$

Check. Plug each of the three points into the proposed answer:

$$P = (1, 1, 1) : 2(1) + 3(1) - 4(1) = 1 \checkmark$$

$$Q = (-3, 1, -1) : 2(-3) + 3(1) - 4(-1) = 1 \checkmark$$

$$R = (-2, 3, 1) : 2(-2) + 3(3) - 4(1) = 1 \checkmark$$

(2) Express $\vec{v} = \vec{i} + 7\vec{j}$ as the sum of a vector parallel to $\vec{b} = \vec{i} + 2\vec{j}$ and a vector perpendicular to \vec{b} . Please make sure that your answer is correct.

We compute

$$\begin{aligned}\text{proj}_{\vec{b}} \vec{v} &= \frac{\vec{v} \cdot \vec{b}}{\vec{b} \cdot \vec{b}} \vec{b} \\ &= \frac{(\vec{i} + 7\vec{j}) \cdot (\vec{i} + 2\vec{j})}{(\vec{i} + 2\vec{j}) \cdot (\vec{i} + 2\vec{j})} (\vec{i} + 2\vec{j}) \\ &= \frac{15}{5} (\vec{i} + 2\vec{j}) \\ &= 3\vec{i} + 6\vec{j}.\end{aligned}$$

We also compute

$$\vec{v} - \text{proj}_{\vec{b}} \vec{v} = (\vec{i} + 7\vec{j}) - (3\vec{i} + 6\vec{j}) = -2\vec{i} + \vec{j}.$$

We conclude that

$\vec{v} = (3\vec{i} + 6\vec{j}) + (-2\vec{i} + \vec{j}),$ with $3\vec{i} + 6\vec{j}$ parallel to \vec{b}
 and $-2\vec{i} + \vec{j}$ perpendicular to \vec{b}

Check. Observe that

- $(3\vec{i} + 6\vec{j}) + (-2\vec{i} + \vec{j}) = 1\vec{i} + 7\vec{j} = \vec{v} \checkmark,$
- $3\vec{i} + 6\vec{j}$, which is equal to 3 times \vec{b} is parallel to $\vec{b} \checkmark$, and
- $(-2\vec{i} + \vec{j}) \cdot \vec{b} = (-2\vec{i} + \vec{j}) \cdot (\vec{i} + 2\vec{j}) = 0. \checkmark$

(3) Consider the function $f(x, y) = x - y^2$ and the point $P = (2, 2)$.

(a) Find the gradient of f at P .

$$\vec{\nabla} f|_P = (f_x \vec{i} + f_y \vec{j})|_P = (\vec{i} - 2y\vec{j})|_{(2,2)} = \boxed{\vec{i} - 4\vec{j}}.$$

(b) Find the directional derivative of f in the direction of $\vec{v} = 3\vec{i} - \vec{j}$ at P .

$$D_{\vec{v}} f|_P = \vec{\nabla} f|_P \cdot \frac{\vec{v}}{|\vec{v}|} = (\vec{i} - 4\vec{j}) \cdot \frac{3\vec{i} - \vec{j}}{\sqrt{10}} = \boxed{\frac{7}{\sqrt{10}}}.$$

(c) **Draw the level set of f that contains P .**

We see that $f(2, 2) = 2 - 4 = -2$. The level set of f which contains P is $x - y^2 = -2$; which is the same as $x = y^2 - 2$. The graph is a parabola, knocked on its side (with the positive axis in its center) shifted to the left by 2. We drew a picture on the picture page, at the end of the solution set.

(d) **Draw the gradient of f at P ; put the tail of the gradient on P .**

We drew this gradient on the picture page.

(4) **Find the length of the curve $\vec{r}(t) = \cos 2t \vec{i} + \sin 2t \vec{j} + t \vec{k}$, for $0 \leq t \leq \pi$.**

Arc length is the integral of speed; so the arc length is

$$\begin{aligned} & \int_0^\pi |\vec{r}'(t)| dt \\ &= \int_0^\pi |(-2 \sin 2t) \vec{i} + (2 \cos 2t) \vec{j} + (1) \vec{k}| dt \\ &= \int_0^\pi \sqrt{4 \sin^2(2t) + 4 \cos^2(2t) + 1}, dt \\ &= \int_0^\pi \sqrt{5}, dt = \boxed{\sqrt{5}\pi} \end{aligned}$$

(5) **Graph, name, and describe the set of all points in 3-space which satisfy the equation $z^2 - x^2 - y^2 = 1$.**

This graph is a hyperboloid of two sheets. Draw the hyperbola $z^2 - y^2 = 1$ in the yz -plane. Now rotate this hyperbola around the z -axis. We drew a picture on the picture page.

(6) **Find the absolute maximum and minimum values of**

$$f(x, y) = 2 + 2x + 4y - x^2 - y^2$$

on the triangular region in the first quadrant bounded by the lines $x = 0$, $y = 0$, and $y = 9 - x$.

We drew the region on the picture page.

- We first look for interior points where f_x and f_y both vanish. We compute $f_x = 2 - 2x$ and $f_y = 4 - 2y$. We see that the only point where $f_x = 0$ and $f_y = 0$ is $(1, 2)$.

- We find points on $x = 0$ where the derivative of (f restricted to $x = 0$) vanishes. We are interested in $f(y) = 2 + 4y - y^2$ with $0 \leq y \leq 9$. We compute $f'(y) = 4 - 2y$. We consider $(0, 2)$.
- We find points on $y = 9 - x$ where the derivative of (f restricted to $y = 9 - x$) vanishes. We are interested in

$$f(x) = 2 + 2x + 4(9 - x) - x^2 - (9 - x)^2$$

with $0 \leq x \leq 9$. We compute $f'(x) = 2 - 4 - 2x + 2(9 - x) = 16 - 4x$. We consider $(4, 5)$.

- We find points on $y = 0$ where the derivative of (f restricted to $y = 0$) vanishes. We are interested in $f(x) = 2 + 2x - x^2$ for $0 \leq x \leq 9$. We compute $f'(x) = 2 - 2x$. We consider $(1, 0)$.
- We also consider the corner points $(0, 0)$, $(0, 9)$, $(9, 0)$.

The maximum and the minimum of f occur at one of the underlined points. We compute f at each of these points:

$$\begin{aligned} f(1, 2) &= 7 \\ f(0, 2) &= 6 \\ f(4, 5) &= 11 \\ f(1, 0) &= 3 \\ f(0, 0) &= 2 \\ f(0, 9) &= -43 \\ f(9, 0) &= -61 \end{aligned}$$

Thus,

The maximum of f on the given region is 7 and $f(1, 2) = 7$.
 The minimum of f on the given region is -61 and $f(9, 0) = -61$.

(7) **Find the volume of the solid between $z = 4 - x^2 - y^2$ and $z = x^2 + y^2 - 4$.**

Both equations represent paraboloids. The paraboloid on the left has vertex on the point $(0, 0, 4)$ and aims downwards. The paraboloid on the right has vertex on the point $(0, 0, -4)$ and aims upwards. The two surfaces meet when

$$\begin{aligned} 4 - x^2 - y^2 &= x^2 + y^2 - 4 \\ 8 &= 2x^2 + 2y^2 \\ 4 &= x^2 + y^2 \end{aligned}$$

We drew a picture on the picture page. We integrate in polar coordinates. We describe the fattest cross section by $0 \leq \theta \leq 2\pi$ and $0 \leq r \leq 4$.

For each point (r, θ) in the fattest cross section, z goes from $r^2 - 4$ to $4 - r^2$. The volume is equal to

$$\begin{aligned}
 & \int_0^{2\pi} \int_0^2 \int_{r^2-4}^{4-r^2} r \, dz \, dr \, d\theta \\
 &= \int_0^{2\pi} \int_0^2 2(4 - r^2)r \, dr \, d\theta \\
 &= \int_0^{2\pi} \int_0^2 2(4r - r^3) \, dr \, d\theta \\
 &= \int_0^{2\pi} 2(2r^2 - \frac{r^4}{4}) \Big|_0^2 \, d\theta \\
 &= \int_0^{2\pi} 8d\theta = \boxed{16\pi}
 \end{aligned}$$

(8) **Compute** $\int_0^1 \int_y^1 e^{x^2} \, dx \, dy$.

None of know $\int e^{x^2} \, dx$. We have to do something clever. We try to change the order of integration. The present integral is computed over the region described by: For each fixed y with $0 \leq y \leq 1$, x goes from $x = y$ to $x = 1$. This fills up a triangle using horizontal lines.

On the picture pages we set up the same integral by filling up the region with vertical lines. The original integral is equal to

$$\begin{aligned}
 & \int_0^1 \int_0^x e^{x^2} \, dy \, dx \\
 &= \int_0^1 e^{x^2} y \Big|_0^x \, dx \\
 &= \int_0^1 x e^{x^2} \, dx \\
 &= \frac{1}{2} e^{x^2} \Big|_0^1 \\
 &= \boxed{\frac{1}{2}(e - 1)}
 \end{aligned}$$

(9) **Find the area of the region bounded by $x = -y^2$ and $y = x + 2$. (You must draw a meaningful picture.)**

The picture on the picture page shows that best way to fill the region is with horizontal lines. For each fixed y with $-2 \leq y \leq 1$, x goes from

$x = y - 2$ to $x = -y^2$. The area is equal to

$$\begin{aligned}
& \int_{-2}^1 \int_{y-2}^{-y^2} dx dy \\
&= \int_{-2}^1 x \Big|_{y-2}^{-y^2} dy \\
&= \int_{-2}^1 (-y^2 - (y - 2)) dy \\
&= \int_{-2}^1 (-y^2 - y + 2) dy \\
&= \left(\frac{-y^3}{3} - \frac{y^2}{2} + 2y \right) \Big|_{-2}^1 \\
&= -\frac{1}{3} - \frac{1}{2} + 2 - \left(\frac{8}{3} - \frac{4}{2} - 4 \right) \\
&= -\frac{9}{3} - \frac{1}{2} + 2 + 2 + 4 \\
&= 5 - \frac{1}{2} \\
&= \boxed{\frac{9}{2}}
\end{aligned}$$

(10) **Find parametric equations for the line tangent to the curve**

$$\vec{r}(t) = t^2 \vec{i} + t^3 \vec{j}$$

at the point $(4, 8)$.

The position vector $\vec{r}(t)$ touches the point $(4, 8)$ at time $t = 2$. We want the line which passes through $(4, 8)$ and is parallel to $\vec{r}'(2)$.

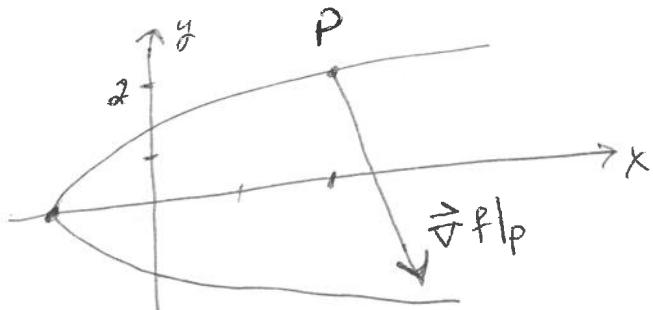
We compute $\vec{r}'(t) = 2t \vec{i} + 3t^2 \vec{j}$; hence, $\vec{r}'(2) = 4 \vec{i} + 12 \vec{j}$. The line through $(4, 8)$ parallel to $\vec{r}'(2) = 4 \vec{i} + 12 \vec{j}$ is

$$\boxed{x = 4 + 4t, \quad y = 8 + 12t.}$$

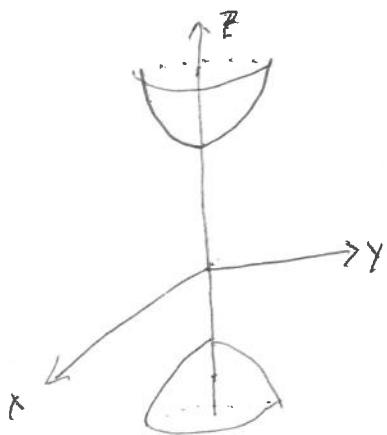
Of course, when one eliminates the parameter one gets $y = 3x - 4$, which is the equation of the line tangent to $y = x^{3/2}$ at $(4, 8)$.

Final Exam Fall 2024 Picture Page

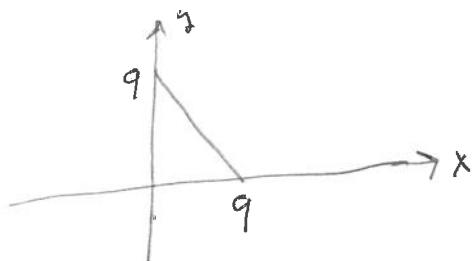
#3



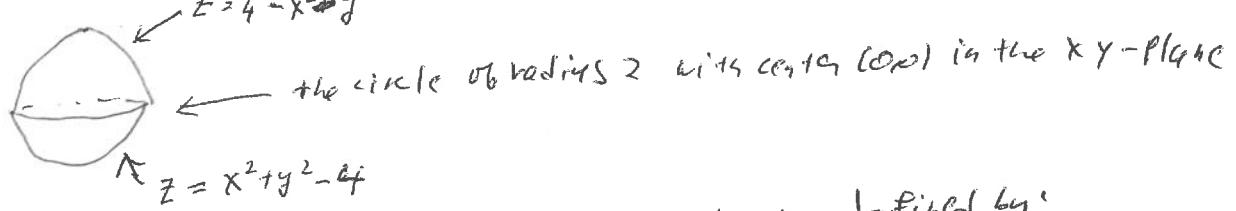
#5



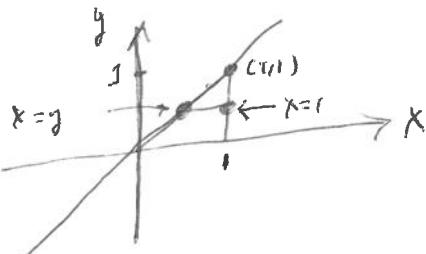
#6



#7



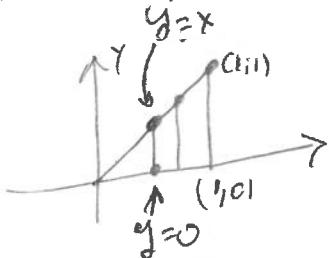
#8 The original integral is taken over a region defined by:
For each fixed y with $0 \leq y \leq 1$, it goes from $x=y$ to $x=1$.



Continued on the next page

Picture Page 2

#8 continued
We fill up the same region using vertical lines



for each fixed x with $0 \leq x \leq 1$, y goes from $y=0$ to $y=x$

The integral becomes

$$\int_0^1 \int_0^x e^{x^2} dy dx$$

#9

