No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.

Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will return your quiz when I next see you.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 7, November 13, 2024

Find the area of the region bounded by y = 1 - x, y = 2, and $y = e^x$. (You must draw the region.)

Answer:

The picture shows that we should use horizontal lines to fill the region and that for each fixed y, with $1 \le y \le 2$, x goes from x = 1 - y to $x = \ln y$. The area is

$$\int_{1}^{2} \int_{1-y}^{\ln y} dx dy$$

$$= \int_{1}^{2} x \Big|_{1-y}^{\ln y} dy$$

$$= \int_{1}^{2} \ln y - (1-y) dy$$

Recall that one uses integration by parts $\int u \, dv = uv - \int v \, du$ to compute $\int \ln y \, dy$. Take $u = \ln y$ and dv = dy. Compute $du = \frac{1}{y} \, dy$ and v = y. So, $\int \ln y \, dy = \int u \, dv = uv - \int v \, du = y \ln y - \int dy = y \ln y - y$.

$$= (y \ln y - y - y + \frac{y^2}{2}) \Big|_{1}^{2}$$

$$= (2 \ln 2 - 2 - 2 + \frac{2^2}{2}) - (1 \ln 1 - 1 - 1 + \frac{1^2}{2})$$

$$= (2 \ln 2 - 4 + 2) - (-2 + \frac{1}{2}) = 2 \ln 2 - \frac{1}{2}$$