

2. (There is no partial credit for this problem. Make sure your answer is correct.) Let $\vec{a} = -3\vec{i} + 4\vec{j} + 3\vec{k}$ and $\vec{b} = 4\vec{i} + 3\vec{j} + 2\vec{k}$. Find vectors \vec{u} and \vec{v} with $\vec{b} = \vec{u} + \vec{v}$, \vec{u} parallel to \vec{a} , and \vec{v} perpendicular to \vec{a} .

$$\vec{u} = \text{proj}_{\vec{a}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a} = \frac{-12 + 12 + 6}{9 + 16 + 9} \vec{a} = \frac{6}{34} \vec{a}$$

$$\vec{u} = \frac{-18}{34} \vec{i} + \frac{24}{34} \vec{j} + \frac{18}{34} \vec{k}$$

$$\vec{v} = \vec{b} - \vec{u} = \frac{136}{34} \vec{i} + \frac{102}{34} \vec{j} + \frac{68}{34} \vec{k} = \left(\frac{-18}{34} \vec{i} + \frac{24}{34} \vec{j} + \frac{18}{34} \vec{k} \right)$$

$$\vec{v} = \frac{154}{34} \vec{i} + \frac{78}{34} \vec{j} + \frac{50}{34} \vec{k}$$