

~~123~~ 124

3. Find the equations of any line which is parallel to $2x - 3y + 4z = 12$.

$(0,0,0)$ is not on the plane
 $3\vec{i} + 2\vec{j}$ is \parallel to the plane

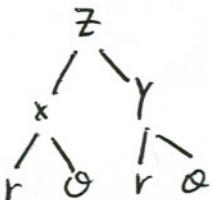
$$\begin{cases} x = 3t \\ y = 2t \\ z = 0 \end{cases}$$

4. Find the equations of the plane tangent to $z = x^2 + y^2$ when $x = 1$ and $y = 2$.

the point is $(1, 2, 5)$

$\vec{\nabla}$ are \perp level sets

my surface is the level set


$$0 = x^2 + y^2 - z$$

The relevant $\vec{\nabla}$ is $2x\vec{i} + 2y\vec{j} - \vec{k}$

$$\vec{\nabla}|_{pt} = 2\vec{i} + 4\vec{j} - \vec{k}$$

tan plane is $(2(x-1) + 4(y-2) - (z-5)) = 0$

5. Suppose that $z = f(x, y)$, and x and y are written polar coordinates (that is, $x = r \cos \theta$ and $y = r \sin \theta$). Express $\frac{\partial z}{\partial \theta}$ in terms of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

$$\frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x}(-r \sin \theta) + \frac{\partial z}{\partial y} r \cos \theta$$