


~~101~~
122

2. Let R be the region $R = \{(x, y) \mid 2 \leq x \leq 8, \text{ and } 2 \leq y \leq 6\}$. Let P be the partition of R into six equal squares by the lines $x = 4$, $x = 6$, and $y = 4$.

Approximate $\iint_R (72 - x^2 - y) dA$ by calculating the corresponding Riemann

sum $\sum_{k=1}^6 f(\bar{x}_k, \bar{y}_k) \Delta A_k$, where (\bar{x}_k, \bar{y}_k) is the center of the k^{th} box, and ΔA_k

is the area of the k^{th} box. (Be sure to answer the question I have asked. You will receive no credit for computing the integral directly. Express your answer as a sum of products. There is no need to do any arithmetic.)

Each box has area 4
So $\Delta A_k = 4$ for all k

$$\sum_{k=1}^6 f(\bar{x}_k, \bar{y}_k) \Delta A_k = 4 \left((72-9-5) + (72-25-5) + (72-49-5) + (72-9-3) + (72-25-3) + (72-49-3) \right)$$