

117

5. Where does the line normal to $x^2 + y^2 + 2z^2 = 6$ at $(1, 2, 1)$ intersect $2x + 3y + z = 49$?

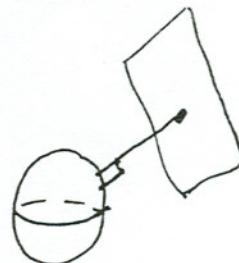
∇ 's are \perp level sets.

$$\nabla(LHS)|_{(1,2,1)} = (2x\hat{i} + 2y\hat{j} + 4z\hat{k})|_{(1,2,1)} = 2\hat{i} + 4\hat{j} + 4\hat{k}$$

The normal line is $\begin{aligned} x &= 1 + 2t \\ y &= 2 + 4t \\ z &= 1 + 4t \end{aligned}$

The normal line hits $2x + 3y + z = 49$

when $2(1+2t) + 3(2+4t) + 1 + 4t = 49$


$$2 + 6 + 1 + 4t + 12t + 4t = 49$$

$$20t = 40$$

$$t = 2$$

The normal line hits the plane at

$$(5, 10, 9).$$

15.7/26

6. Sand is pouring onto a conical pile in such a way that at a certain instant the height is 100 inches and is increasing at 3 inches per minute and the radius is 40 inches and is increasing at 2 inches per minute. How fast is the volume increasing at that instant? (The volume of a cone is $V = \frac{1}{3}\pi r^2 h$.)

$$\frac{dV}{dt} = \frac{1}{3}\pi r^2 \frac{dh}{dt} + \frac{2}{3}\pi r h \frac{dr}{dt}$$

15.6/20

$$\frac{dV}{dt} \bigg|_{\substack{\text{this} \\ \text{instant}}} = \frac{1}{3}\pi (40)^2 3 + \frac{2}{3}\pi (40)(100)2 \frac{\text{in}^3}{\text{min}}$$